• Title/Summary/Keyword: frequency domain design

Search Result 607, Processing Time 0.023 seconds

Frequency Domain Analysis of Laser and Acoustic Pressure Parameters in Photoacoustic Wave Equation for Acoustic Pressure Sensor Designs

  • Tabaru, Timucin Emre;Hayber, Sekip Esat;Saracoglu, Omer Galip
    • Current Optics and Photonics
    • /
    • v.2 no.3
    • /
    • pp.250-260
    • /
    • 2018
  • A pressure wave created by the photoacoustic effect is affected by the medium and by laser parameters. The effect of these parameters on the generated pressure wave can be seen by solving the photoacoustic wave equation. These solutions which are examined in the time domain and the frequency domain should be considered by researchers in acoustic sensor design. In particular, frequency domain analysis contains significant information for designing the sensor. The most important part of this information is the determination of the operating frequency of the sensor. In this work, the laser parameters to excite the medium, and the acoustic signal parameters created by the medium are analyzed. For the first time, we have obtained solutions for situations which have no frequency domain solutions in the literature. The main focal point in this work is that the frequency domain solutions of the acoustic wave equation are performed and the effects of the frequency analysis of the related parameters are shown comparatively from the viewpoint of using them in acoustic sensor designs.

Analysis of Subjective Sound Quality Characteristics for the HVAC System using the Design of Experiments (실험계획법을 이용한 차량 공조시스템의 음질 특성 분석)

  • Oh Jae-Eung;Yun Taekun;bin Abu Aminudin;Sim Hyun-Jin;Lee Jung-Youn;Kim Sung-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.11 s.176
    • /
    • pp.59-63
    • /
    • 2005
  • Since human listening is very sensitive when the sound hit him, the subjective index of sound quality is required. Therefore, at each situation of sound evaluation its composed with the sound quality factor. But, when substituting the level of one frequency band we could not see the tendency of substitution at whole frequency band during the sound quality evaluation. In this study a design of experiment is used. The frequency domain is divided into an equally 12 parts and each level of domain whether is given increase or decrease due to the change of frequency band based on 'sharp' and 'annoy' of the sound quality is analyzed. By using the design of experiment the number of test is reduce very effectively by the number of experiment and each band the main effect will be as a solution. The case of sound quality for 'sharp' and 'annoy' at each band, the change of band (increase or decrease of sound pressure or keep maintain) which will be the most effects on the characteristics of sound quality can be identify and this will be able to us to select the objective frequency band. Through these obtained results the physical changes of level at arbitrary frequency domain sensitivity can be adapted.

Partial Pole Assignment via Constant Gain Feedback in Two Classes of Frequency-domain Models

  • Wang, Guo-Sheng;Yang, Guo-Zhen;Duan, Guang-Ren
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.2
    • /
    • pp.111-116
    • /
    • 2007
  • The design problem of partial pole assignment (PPA) in two classes of frequency-domain MIMO models by constant gain feedback is investigated in this paper. Its aim is to design a constant gain feedback which changes only a subset of the open-loop eigenvalues, while the rest of them are kept unchanged in the closed-loop system. A near general parametric expression for the feedback gain matrix in term of a set of design parameter vectors and the set of the closed-loop poles, and a simple parametric approach for solving the proposed problem are presented. The set of poles do not need to be previously prescribed, and can be set undetermined and treated together with the set of parametric vectors as degrees of design freedom provided by the approach. An illustrative example shows that the proposed parametric method is simple and effective.

On Stability for Design of Repetitive Controllers in Frequency Domain (주파수 영역에서 연속반복학습제어기 설계 안정성 해석)

  • Lee, Soo-Cheol
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.12 no.4
    • /
    • pp.126-130
    • /
    • 2007
  • This paper presents a method to design a repetitive controller that is specified in the specified trajectory for the repetitive works. With the single-model design approach, the controller is derived by minimizing a frequency-domain based cost function that produces monotonic convergence of the tracking error as a function of repetition number. Numerical illustrations show how the proposed single-model design method produces a repetitive controller in a single nominal model of the system.

  • PDF

Desing and Analysis of Weather/Wave Observation Network for the Coastal Zone (연안해역의 기상${\cdot}$파랑관측망 설계 및 해석기술의 구축 - 해양파랑관측자료의 해석방법 -)

  • Ryu Cheong-Ro;KIM Hee-Joon;SHON Byung-Kyu
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.30 no.1
    • /
    • pp.16-30
    • /
    • 1997
  • Application of digital filter to the wave analysis is studied using the observed data by wave gauge. Sea wave data obtained from wave gauge always include long wave frequency components. In order to estimate the sea wave parameters, we must re-analyzed wave data by using a digital filter and the concept of mean sea level correction method. By the wave by wave analysis and spectral methods, sea wave parameters on the basis of wave data obtained by the conventional method and digital filter are compared. The best-fitted design filter determined by the necessary conditions of frequency responses, can be obtained by calculating various transfer functions. Thus, to get the best the digital filter design, both Butterworth filter and Savitzky-Golay filter of digital filter are used in the frequency and time domain, respectively. Three cases of observation wave data are calculated by applying digital filter. The components of different frequency bands in the surf zone are coexisted in three cases. The wave data for wind wave components is computed using the digital filter the surf zone and off-surf zone, and based on the filtered data, wave parameters are calculated by the spectral analysis and wave by wave analysis methods, respectively. As a results, when sea wave data observed by wave gauge are analyzed, the Savitzky-Golay method is recommended which can well appear cut-off frequency by experimental choosing filter length in the time domain. The better mean sea level correction method is the Butterworth filter in the frequency domain.

  • PDF

Off-Line PD Diagnosis for Stator Winding of Rotating Machines Using a UWB Sensor

  • Lwin, Kyaw-Soe;Park, Noh-Joon;Kim, Hee-Dong;Ju, Young-Ho;Park, Dae-Hee
    • Journal of Electrical Engineering and Technology
    • /
    • v.3 no.2
    • /
    • pp.263-270
    • /
    • 2008
  • We studied partial discharge detection by sensing electromagnetic waves emitted from the partial discharge source in an HV Rotating Machine using a UWB sensor. In this study, we design a new type of compact low frequency UWB sensor based on micro-strip technology. We also perform many experiments of offline and dismantled testing compared with the existing HFCT on stator winding of the HV generator. We mention the detailed design of a new compact UWB sensor along with the time domain PRPD pattern and frequency domain results of partial discharge in the stator winding of a 6.6kV rotating machine by offline testing performed in a laboratory.

Design of BiCMOS Log-Domain Filters for Low-Voltage and Low-Power (저전압, 저전력 BiCMOS 로그 도메인 필터 설계)

  • Ahn, Na-Young;Woo, Young-Shin;Sung, Man-Young
    • Proceedings of the KIEE Conference
    • /
    • 2000.07c
    • /
    • pp.1605-1607
    • /
    • 2000
  • In this paper, the design of class AB BiCMOS log-domain filter for low-voltage and low-power was proposed. This filter is consist of a log-domain integrator using folded junctions with capacitor connected to emitter and it's class AB structure. A comparison between the proposed class AB BiCMOS log-domain filter and classical class A BiCMOS log-domain filter is drawn on the basis of SNR, THD and the frequency response. This comparison shows proposed filter are more than good SNR, THD and frequency characteristics than more class A log-domain filter for low voltage and low power.

  • PDF

Impact of time and frequency domain ground motion modification on the response of a SDOF system

  • Carlson, Clinton P.;Zekkos, Dimitrios;McCormick, Jason P.
    • Earthquakes and Structures
    • /
    • v.7 no.6
    • /
    • pp.1283-1301
    • /
    • 2014
  • Ground motion modification is extensively used in seismic design of civil infrastructure, especially where few or no recorded ground motions representative of the design scenario are available. A site in Los Angeles, California is used as a study site and 28 ground motions consistent with the design earthquake scenario are selected. The suite of 28 ground motions is scaled and modified in the time domain (TD) and frequency domain (FD) before being used as input to a bilinear SDOF system. The median structural responses to the suites of scaled, TD-modified, and FD-modified motions, along with ratios of he modified-to-scaled responses, are investigated for SDOF systems with different periods, strength ratios, and post-yield stiffness ratios. Overall, little difference (less than 20%) is observed in the peak structural accelerations, velocities, and displacements; displacement ductility; and absolute accelerations caused by the TD-modified and FD-modified motions when compared to the responses caused by the scaled motions. The energy absorbed by the system when the modified motions are used as input is more than 20% greater than when scaled motions are used as input. The observed trends in the structural response are predominantly the result of changes in the ground motion characteristics caused by modification.

A Study on the Method for Dynamic Response Analysis in Frequency Domain of an Offshore Wind Turbine by Linearization of Equations of Motion for Multibody (다물체계 운동 방정식 선형화를 통한 해상 풍력 발전기 동적 거동의 주파수 영역 해석 방법에 관한 연구)

  • Ku, Namkug;Roh, Myung-Il;Ha, Sol;Shin, Hyun-Kyoung
    • Korean Journal of Computational Design and Engineering
    • /
    • v.20 no.1
    • /
    • pp.84-92
    • /
    • 2015
  • In this study, we describe a method to analysis dynamic behavior of an offshore wind turbine in the frequency domain and expected effects of the method. An offshore wind turbine, which is composed of platform, tower, nacelle, hubs, and blades, can be considered as multibody systems. In general, the dynamic analysis of multibody systems are carried out in the time domain, because the equations of motion derived based on the multibody dynamics are generally nonlinear differential equations. However, analyzing the dynamic behavior in time domain takes longer than in frequency domain. In this study, therefore, we describe how to analysis the system multibody systems in the frequency domain. For the frequency domain analysis, the non-linear differential equations are linearized using total derivative and Taylor series expansions, and then the linearized equations are solved in time domain. This method was applied to analysis of double pendulum system for the verification of its effectiveness, and the equations of motion for the offshore wind turbine was derived with assuming that the wind turbine is rigid multibody systems. Using this method, the dynamic behavior analysis of the offshore wind turbine can be expected to take less time.

Design and Sensitivity Analysis of Input Shaping Filter in the Z-domain (Z-영역에서 입력성형기의 설계와 민감도 해석)

  • Park, Un-Hwan;Lee, Jae-Won;Im, Byeong-Deok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.7 s.178
    • /
    • pp.1854-1862
    • /
    • 2000
  • Input shaping method is to convolute input shaper, which is sequence of impulses, with reference input command not to excite the natural frequency of system. To reduce residual vibration for the ch ange of frequency, the number of impulses should be increased. Until now, amplitudes and time interval of those has been searched from the derivative of residual vibration. However, if time interval of impulses is fixed as the half of vibration period of system, input shaper H(z) in z-domain becomes (I-pz-1)n/K in which increasing n is the mean that robustness for change of parameter is improved. Also, design of many types of input shapers in z-domain is very easy because sensitivity curve is displayed with $\mid$H(z)zn$\mid$$\times$100. In the z-domain, EI(Extra-Insensitive) input shaper could be designed without solving nonlinear simultaneous equations as design in continuous time domain. In addition to, the design possibility of input shaper for a damped system was shown.