DOI QR코드

DOI QR Code

Frequency Domain Analysis of Laser and Acoustic Pressure Parameters in Photoacoustic Wave Equation for Acoustic Pressure Sensor Designs

  • Received : 2018.02.12
  • Accepted : 2018.04.14
  • Published : 2018.06.25

Abstract

A pressure wave created by the photoacoustic effect is affected by the medium and by laser parameters. The effect of these parameters on the generated pressure wave can be seen by solving the photoacoustic wave equation. These solutions which are examined in the time domain and the frequency domain should be considered by researchers in acoustic sensor design. In particular, frequency domain analysis contains significant information for designing the sensor. The most important part of this information is the determination of the operating frequency of the sensor. In this work, the laser parameters to excite the medium, and the acoustic signal parameters created by the medium are analyzed. For the first time, we have obtained solutions for situations which have no frequency domain solutions in the literature. The main focal point in this work is that the frequency domain solutions of the acoustic wave equation are performed and the effects of the frequency analysis of the related parameters are shown comparatively from the viewpoint of using them in acoustic sensor designs.

Keywords

References

  1. W. Lahmann, H. J. Ludewig, and H. Welling, "Opto-acoustic trace analysis in liquids with the frequency-modulated beam of an argon ion laser," Anal. Chem. 49, 549-551 (1977), doi: 10.1021/ac50012a012.
  2. S. Oda, T. Sawada, and H. Kamada, "Determination of ultratrace cadmium by laser-induced photoacoustic absorption spectrometry," Anal. Chem. 50, 865-867 (1978), doi: 10.1021/acs.analchem.6b03286.
  3. S. Oda, T. Sawada, M. Nomura, and H. Kamada, "Simultaneous determination of mixtures in liquid by laser-induced photoacoustic spectroscopy," Anal. Chem. 51, 686-688 (1979), doi: 10.1021/ac50042a025.
  4. A. C. Tam, "Applications of photoacoustic sensing techniques," Rev. Mod. Phys. 58, 381 (1986), doi: 10.1103/RevModPhys.58.381.
  5. S. J. Davies, C. Edwards, G. S. Taylor, and S. B. Palmer, "Laser-generated ultrasound: its properties, mechanisms and multifarious applications," J. Phys. D: Appl. Phys. 26, 329 (1993), doi: 10.1088/0022-3727/26/3/001.
  6. H. A. MacKenzie, G. B. Christison, P. Hodgson, and D. Blanc, "A laser photoacoustic sensor for analyte detection in aqueous systems," Sens. Actuators, B 11, 213-220 (1993), doi: 10.1016/0925-4005(93)85257-B.
  7. H. A. MacKenzie, H. S. Ashton, Y. C. Shen, J. Lindberg, P. Rae, K. M. Quan, S. Spiers, "Blood glucose measurements by photoacoustics," in Proc. Biomedical Optical Spectroscopy and Diagnostics (United States, Mar. 1998), paper BTuC1, doi: 10.1364/BOSD.1998.BTuC1.
  8. G. B. Christison and H. A. MacKenzie, "Laser photoacoustic determination of physiological glucose concentrations in human whole blood," Med. Biol. Eng. Comput. 31, 284-290 (1993), doi: 10.1007/BF02458048.
  9. H. A. MacKenzie, H. S. Ashton, S. Spiers, Y. Shen, S. S. Freeborn, J. Hannigan, and P. Rae, "Advances in photoacoustic noninvasive glucose testing," Clin. Chem. 45, 1587-1595 (1999), ISSN: 1530-8561.
  10. F. J. Harren, J. Mandon, and S. M. Cristescu, "Photoacoustic spectroscopy in trace gas monitoring," in Encyclopedia of Analytical Chemistry (1999), ISBN: 10.1002/9780470027318.a0718.pub2.
  11. A. Elia, P. M. Lugara, C. De Franco, and V. Spagnolo, "Photoacoustic techniques for trace gas sensing based on semiconductor laser sources," Sensors, 9, 9616-9628 (2009), doi: 10.3390/s91209616.
  12. A. Elia, C. Di Franco, P. M. Lugara, and G. Scamarcio, "Photoacoustic spectroscopy with quantum cascade lasers for trace gas detection," Sensors, 6, 1411-1419 (2006), doi: 10.2478/s11534-009-0042-8.
  13. A. Miklos, P. Hess, and Z. Bozoki, "Application of acoustic resonators in photoacoustic trace gas analysis and metrology," Rev. Sci. Instrum. 72, 1937-1955 (2001), doi: 10.1063/1.1353198.
  14. J. W. Choi, M. J. You, S. W. Choi, and S. Y. Woo, "Photoacoustic laser doppler velocimetry using the self-mixing effect of RF-excited CO2 laser," J. Opt. Soc. Korea 8, 188-191 (2004), doi: 10.3807/JOSK.2004.8.4.188.
  15. M. R. McCurdy, Y. Bakhirkin, G. Wysocki, R. Lewicki, and F. K. Tittel, "Recent advances of laser-spectroscopy-based techniques for applications in breathe analysis," J. Breath Res. 1, 014001 (2007), doi: 10.1088/1752-7155/1/1/014001.
  16. X. Yin, L. Dong, H. Zheng, X. Liu, H. Wu, Y. Yang, and S. Jia, "Impact of humidity on quartz-enhanced photoacoustic spectroscopy based CO detection using a near-IR telecommunication diode laser," Sensors 16, 162 (2016), doi: 10.3390/s16020162.
  17. P. Mohajerani, S. Kellnberger, and V. Ntziachristos, "Frequency domain optoacoustic tomography using amplitude and phase," Photoacoust. 2, 111-118 (2014), doi: 10.1016/j.pacs.2014.06.002.
  18. R. E. Kumon, C. X. Deng, and X. Wang, "Frequency-domain analysis of photoacoustic imaging data from prostate adenocarcinoma tumors in a murine model," Ultrasound in Med. Biol. 37, 834-839 (2011), doi: 10.1016/j.ultrasmedbio.2011.01.012.
  19. D. Wu, L. Huang, M. S. Jiang, and H. Jiang, "Contrast agents for photoacoustic and thermoacoustic imaging: a review," Int. J. Mol. Sci. 15, 23616-23639 (2014), doi: 10.3390/ijms151223616.
  20. S. Y. Nam and S. Y. Emelianov, "Array-based real-time ultrasound and photoacoustic ocular imaging," J. Opt. Soc. Korea 18, 151-155 (2014), doi: 10.3807/JOSK.2014.18.2.151.
  21. M. W. Sigrist and F. K. Kneubuhl, "Laser-generated stress waves in liquids," J. Acoust. Soc. Am. 64, 1652-1663 (1978), doi: 10.1121/1.382132.
  22. H. M. Lai and K. Young, "Theory of the pulsed optoacoustic technique," J. Acoust. Soc. Am. 72, 2000-2007 (1982), doi: 10.1121/1.388631.
  23. C. G. A. Hoelen, F. F. M. De Mul, R. Pongers, and A. Dekker, "Three-dimensional photoacoustic imaging of blood vessels in tissue," Opt. Lett. 23, 648-650 (1998), doi: 10.1364/OL.23.000648
  24. I. G. Calasso, W. Craig, and G. J. Diebold, "Photoacoustic point source," Phys. Rev. Lett. 86, 3550 (2001), doi: 10.1103/PhysRevLett.86.3550.
  25. L. V. Wang and H. I. Wu, Biomedical optics: principles and imaging, John Wiley & Sons (2012), ISBN: 9780470177006.
  26. L. V. Wang, "Tutorial on photoacoustic microscopy and computed tomography," IEEE J. Sel. Topics Quantum Electron. 14, 171-179 (2008), doi: 10.1109/JSTQE.2007.913398.
  27. H. Erkol, E. Aytac-Kipergil, M. U. Arabul, and M. B. Unlu, "Analysis of laser parameters in the solution of photoacoustic wave equation," in Proc. SPIE 8581, 858136-1 (2013, March), doi: 10.1117/12.2003844.
  28. H. Erkol, E. Aytac-Kipergil, and M. B. Unlu, "Photoacoustic radiation force on a microbubble," Phys. Rev. E 90, 023001 (2014), doi: 10.1103/PhysRevE.90.023001.
  29. J. Xu, X. Wang, K. L. Cooper, and A. Wang, "Miniature all-silica fiber optic pressure and acoustic sensors," Opt. Lett. 30, 3269-3271 (2005), doi: 10.1364/OL.30.003269.
  30. J. Ma, Miniature fiber-tip Fabry-Perot interferometric sensors for pressure and acoustic detection (Doctoral dissertation, The Hong Kong Polytechnic University) (2014).
  31. A. J. Oxenham and M. Wojtczak, "Frequency selectivity and masking. The Oxford," in Handbook of Auditory Science: Hearing, 5-44 (2010), doi: 10.1093/oxfordhb/9780199233557.013.0002.
  32. Q. Gong, Y. Wang, and M. Xian, "An objective assessment method for frequency selectivity of the human auditory system," Biomed. Eng. Online 13, 171 (2014), doi: 10.1186/1475-925X-13-171.
  33. Y. Ma, Y. He, X. Yu, C. Chen, R. Sun, and F. K. Tittel, "HCl ppb-level detection based on QEPAS sensor using a low resonance frequency quartz tuning fork," Sens. Actuators, B 233, 388-393 (2016), doi:10.1016/j.snb.2016.04.114.
  34. Z. Zhao, S. Nissila, O. Ahola, and R. Myllyla, "Production and detection theory of pulsed photoacoustic wave with maximum amplitude and minimum distortion in absorbing liquid," IEEE Trans. Instrum. Meas. 47, 578-583 (1998), doi: 10.1109/19.744208.
  35. L. V. Wang, "Ultrasound-mediumted biophotonic imaging: a review of acousto-optical tomography and photo-acoustic tomography," Dis. Markers 19, 123-138 (2004), doi: 10.1155/2004/478079.
  36. P. M. Morse and H. Feshbach, "Methods of theoretical physics," Am. J. Phys. 22, 410-413 (1954), doi: 10.1119/1.1933765.
  37. E. Aytac-Kipergil, H. Erkol, S. Kaya, G. Gulsen, and M. B. Unlu, "An analysis of beam parameters on proton-acoustic waves through an analytic approach," Phys. Med. Biol. 62, 4694 (2017), doi: 10.1088/1361-6560/aa642c.
  38. K. M. Quan, G. B. Christison, H. A. MacKenzie and P. Hodgson, "Glucose determination by a pulsed photoacoustic technique: an experimental study using a gelatin-based tissue phantom," Phys. Med. Biol. 38, 1911 (1993), doi: 10.1088/0031-9155/38/12/014.