• Title/Summary/Keyword: Acoustic pressure sensor

Search Result 88, Processing Time 0.028 seconds

Frequency Domain Analysis of Laser and Acoustic Pressure Parameters in Photoacoustic Wave Equation for Acoustic Pressure Sensor Designs

  • Tabaru, Timucin Emre;Hayber, Sekip Esat;Saracoglu, Omer Galip
    • Current Optics and Photonics
    • /
    • v.2 no.3
    • /
    • pp.250-260
    • /
    • 2018
  • A pressure wave created by the photoacoustic effect is affected by the medium and by laser parameters. The effect of these parameters on the generated pressure wave can be seen by solving the photoacoustic wave equation. These solutions which are examined in the time domain and the frequency domain should be considered by researchers in acoustic sensor design. In particular, frequency domain analysis contains significant information for designing the sensor. The most important part of this information is the determination of the operating frequency of the sensor. In this work, the laser parameters to excite the medium, and the acoustic signal parameters created by the medium are analyzed. For the first time, we have obtained solutions for situations which have no frequency domain solutions in the literature. The main focal point in this work is that the frequency domain solutions of the acoustic wave equation are performed and the effects of the frequency analysis of the related parameters are shown comparatively from the viewpoint of using them in acoustic sensor designs.

Quantification of Acoustic Pressure Estimation Error due to Sensor Position Mismatch in Spherical Acoustic Holography (구형 음향 홀로그래피에서 측정위치 부정확성에 의한 음압 추정 오차의 정량화)

  • Lee, Seung-Ha;Kim, Yang-Hann
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.1325-1328
    • /
    • 2007
  • When we visualize the sound field radiated from a spherical sound source, spherical acoustic holography is proper among acoustic holography methods. However, there are measurement errors due to sensor position mismatch, sensor mismatch, directivity of sensor, and background noise. These errors are amplified if one predicts the pressures close to the sources: backward prediction. The goal of this paper is to quantitatively examine the effects of the error due to sensor position mismatch on acoustic pressure estimation. This paper deals with the cases of which the measurement deviations are distributed irregularly on the hologram plane. In such cases, one can assume that the measurement is a sample of many measurement events, and the cause of the measurement error is white noise on the hologram plane. Then the bias and random error are derived mathematically. In the results, it is found that the random error is important in the backward prediction. The relationship between the random error amplification ratio and the measurement parameters is derived quantitatively in terms of their energies.

  • PDF

Incidence Angle Estimation by the Tonpilz Type Underwater Acoustic Vector Sensor with a Quadrupole Structure (Quadrupole 구조를 가진 Tonpilz형 수중 음향 벡터 센서를 이용한 입사각 추정)

  • Lim, Youngsub;Roh, Yongrae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.31 no.8
    • /
    • pp.569-579
    • /
    • 2012
  • Typical Tonpilz type underwater acoustic transducers making use of piezoelectric ceramics detect the magnitude of an acoustic pressure, a scalar quantity, and convert this pressure into a proportional output voltage. The scalar sensor has no directional sensitivity. In this paper, we have proposed a new vector sensor based on the Tonpilz transducer structure, which is sensitive to both the magnitude and the azimuthal direction of an acoustic wave. Validity of this new design has been confirmed with analytic equations and finite element analyses.

Modeling of Sound-structure Interactions for Designing a Piezoelectric Micro-Cantilever Acoustic Vector Sensor (압전 미세 외팔보 형 수중 음향 벡터센서의 작동 원리와 설계 기법)

  • Yang, Seongkwan;Kim, Junsoo;Moon, Wonkyu
    • The Journal of the Acoustical Society of Korea
    • /
    • v.34 no.2
    • /
    • pp.108-116
    • /
    • 2015
  • An acoustic vector sensor is a device that is capable of measuring the direction of wave propagation and the acoustic pressure. In this paper, the modeling of micro-cantilever sensor for the vector sensor are proposed by consideration of acoustic phenomenon in water. Two models based on unimorph structure are proposed in this paper and corresponding transfer function which describes the relation between input pressure wave and output voltage depending on incidence angle and frequency of pressure wave is derived based on lumped model. It has been shown that very thin and flexible micro-cantilever can be used to measure directly the particle velocity component in water.

Development of Waterproof Acoustic Sensor for Shockwave Measurement (탄환 충격파 측정용 방수 음향센서 개발)

  • Hur, Shin;Lee, Duck-Gyu
    • Journal of Sensor Science and Technology
    • /
    • v.28 no.5
    • /
    • pp.318-322
    • /
    • 2019
  • In shooting training, an impact point identification system that uses the impact wave of the bullet to check the impact point in the target plate has been recently used. Acoustic sensors used in these systems must be able to detect shock waves of high sound pressure levels and be both waterproof and dustproof for rainy weather and dusty environments, respectively. In this study, membranes with excellent waterproof, dustproof, and sound transmitting characteristics were selected through a characteristics test; a protection cap was installed to install the selected materials. After coupling the produced protection cap to the acoustic sensor housing, the sensitivity and phase characteristics of the acoustic sensor were checked. Through the waterproof and dustproof test, the performances of its sensitivity and phase characteristics were confirmed. Finally, the normal shockwave of a 5.56 mm diameter bullet was measured using a shockwave detection signal collecting plate equipped with a prototype of the acoustic sensor at a 100 m firing range.

Fiber-Optic Sensor for Acoustic Waves (광섬유를 이용한 음파탐지기의 제작)

  • 유회준;이경목;황준암
    • Proceedings of the Korean Institute of Communication Sciences Conference
    • /
    • 1983.10a
    • /
    • pp.44-47
    • /
    • 1983
  • Through intensity modulation induced by micro bending of an optical fiber, a sensor detects the pressure and frequency of acoustic wave has been implemented. Axial slots on the cylinder suface with a period of 5.5 mm induce efficient microbending of the fiber, and a rubber sleeve covering the fiber enhances the fiber. Compared with a conventional hydrophone, it has a low minimum detectable pressure and can detect acoustic wave in 100Hz - 2KHz range.

  • PDF

Development of Received Acoustic Pressure Analysis Program of CHA using Beam Tracing Method (Beam Tracing 기법을 이용한 수동 소나 센서의 수신 음압해석 프로그램 개발)

  • Kwon, Hyun-Wung;Hong, Suk-Yoon;Song, Jee-Hun;Jeon, Jae Jin;Seo, Young-Soo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.50 no.3
    • /
    • pp.190-198
    • /
    • 2013
  • In order to predict acoustic pressure distributions by exterior incident wave at Cylindrical Hydrophone Array (CHA) sensor's positions, acoustic pressure analysis is performed by using beam tracing method. Beam tracing method is well-known of reliable pressure analysis methods at high-frequency range. When an acoustic noise source is located at the center of rectangular room, acoustic pressure analysis is performed by using both beam tracing method and Power Flow Boundary Element Method (PFBEM). By comparing with results of beam tracing method and those of PFBEM, the accuracy of beam tracing method is verified. We develop the CHA pressure analysis program by verified beam tracing method. The developed software is composed of model input, sensor array creator, analysis option, solver and post-processor. We can choose a model option of 2D or 3D. The sensor array generator is connected to a sonar which is composed of center position, bottom, top and angle between sensors. We also can choose an analysis option such as analysis frequency, beam number, reflect number, etc. The solver module calculates the ray paths, acoustic pressure and result of generating beams. We apply the program to 2D and 3D CHA models, and their results are reliable.

Optimization for the direction of arrival estimation based on single acoustic pressure gradient vector sensor

  • Wang, Xu-Hu;Chen, Jian-Feng;Han, Jing;Jiao, Ya-Meng
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.1
    • /
    • pp.74-86
    • /
    • 2014
  • The optimization techniques are explored in the direction of arrival (DOA) estimation based on single acoustic pressure gradient vector sensor (APGVS). By analyzing the working principle and measurement errors of the APGVS, acoustic intensity approaches (AI) and the minimum variance distortionless response beamforming approach based on single APGVS (VMVDR) are deduced. The radius to wavelength ratio of the APGVS must be not bigger than 0.1 in the actual application, otherwise its DOA estimation performance will degrade significantly. To improve the robustness and estimation performance of the DOA estimation approaches based on single APGVS, two modified processing approaches based on single APGVS are presented. Simulation and lake trial results indicate that the performance of the modified approaches based on single APGVS are better than AI and VMVDR approaches based on single APGVS when the radius to wavelength ratio is not bigger than 0.1, and the two modified DOA estimation methods have excellent estimation performance when the radius to wavelength ratio is bigger than 0.1.

A Physical Ear Model for Evaluating Hybrid-acoustic Sensor Characteristics of Fully Implantable Middle-ear Hearing Aid (완전 이식형 인공중이의 하이브리드 음향센서 특성 평가를 위한 귀 물리모델)

  • Shin, Dong Ho;Moon, Ha Jun;Kim, Myoung Nam;Cho, Jin-Ho
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.8
    • /
    • pp.923-929
    • /
    • 2019
  • In this paper, biomimetic based physical ear model proposed for measuring the characteristics of a hybrid-acoustic sensor for fully implantable middle-ear hearing aid. The proposed physical ear model consists of the external ear, middle-ear, and cochlea. The physical ear model was implemented based on the anatomical structure and CT images of the human ear. To confirm the characteristics of the ear model, the vibrational characteristics of the stapes was measured after applying sound pressure to the tympanic membrane. The measured results were compared with the vibrational characteristics of the human temporal bone specified by ASTM F2504-05. Through the comparison results, the feasibility of the proposed ear model was confirmed. Then, after attaching the hybrid-acoustic sensor to the ear model, the output characteristics of the ECM and acceleration sensor were measured according to the sound pressure. The measured results were compared with previous studies using human temporal bone, and the usefulness of the proposed physical ear model was verified through the analysis results.

Study on the Comparison of Piezoelectric Property of Acoustic Sensor for Valve Leak Diagnosis (밸브누설 진단용 PZT 및 Pb-Free 음향센서의 압전특성 비교 연구)

  • Lee, Sang-Guk;Park, Sung-Keun
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.3383-3388
    • /
    • 2007
  • To compare the sensor performance of AE leak diagnosis system which can measure valve leak conditions, AE activities such as RMS voltage level, AE signal trend, leak rate degree according to AE database, FFT spectrum were measured on valve of the simulated test system for power plant. AE activities were recorded and analyzed from various operating conditions including different temperature, pressure difference, valve size and fluid using both piezoelectric acoustic emission sensor and Pb-Free acoustic emission sensor. The results of this study are utilized to select the type of sensors, the frequency band for filtering and thereby to improve the signal-to-noise ratio for diagnosis or monitoring of valves in operation. As the final result of application study above, portable type leak diagnosis system by AE was developed. The outcome of the study can be definitely applied as a means of the diagnosis or monitoring system for energy saving and prevention of accident for power plant valve.

  • PDF