• Title/Summary/Keyword: free surface closure

Search Result 33, Processing Time 0.022 seconds

Simulation of Turbulent Flow and Surface Wave Fields around Series 60 $C_B$=0.6 Ship Model

  • Kim, Hyoung-Tae;Kim, Jung-Joong
    • Journal of Ship and Ocean Technology
    • /
    • v.5 no.1
    • /
    • pp.38-54
    • /
    • 2001
  • A finite difference method for calculating turbulent flow and surface wave fields around a ship model is evaluated through the comparison with the experimental data of a Series 60 $C_B$=0.6 ship model. The method solves the Reynolds-averaged Navior-Stokes Equations using the non-staggered grid system, the four-stage Runge-Kutta scheme for the temporal integration of governing equations and the Bladwin-Lomax model for the turbulence closure. The free surface waves are captured by solving the equation of the kinematic free-surface condition using the Lax-Wendroff scheme and free-surface conforming grids are generated at each time step so that one of the grid surfaces coincides always with the free surface. The computational results show an overall close agreement with the experimental data and verify that the present method can simulate well the turbulent boundary layers and wakes as well as the free-surface waves.

  • PDF

A Computational Study on Turbulent Flows around Single and Tandem Two-Dimensional Hydrofoils with Shallow Submergence

  • Kim, H.T.;Park, J.B.;Kim, W.J.
    • Journal of Ship and Ocean Technology
    • /
    • v.4 no.1
    • /
    • pp.11-20
    • /
    • 2000
  • Reynolds-averaged Navier-Stokes equations are numerically solved using a secondorder finite difference method for the analysis of turbulent flows around single and tandem hydrofoils advancing under the free surface. The location of the free surface, not known a priori, is computed from the kinematic free surface condition and the computational grid is conformed at each iteration to the free surface deformation. The eddy viscosity model of Baldwin-Lomax is employed for the turbulence closure. The method is validated through the comparision of the numerical results with the experimental data for a single hydrofoil of a Joukowski foil section. A computational study is also carried out to investigate the effect of the submergence depth and the Froude number on the lift and the drag of the hydrofoil. For tandem hydrofoils, computations are performed for several separation distances between the forward and aft foils to see the interference effect. The result shows clearly how the lift and drag change with the separation distance.

  • PDF

Code Development for Computation of Turbulent Flow around a Ship Model with Free-Surface (자유표면을 포함한 선체주위 난류유동 해석 코드 개발)

  • Kim J.J.;Kim H.T.;Van S.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1998.05a
    • /
    • pp.145-155
    • /
    • 1998
  • A computer code has been developed for the computation of the viscous flow around a ship model with the free surface. In this code, the incompressible Reynolds-averaged Navier-Stokes equations are solved numerically by a finite difference method which employes second-order finite differences for the spatial discretization and a four-stage Runge-Kutta scheme for the temporal integration of the governing equations. For the turbulence closure, a modified version of the Baldwin-Lomax model is exploited. The location of the free surface is determined by solving the equation of the kinematic free-surface condition using the Lax-Wendroff scheme and the boundary-fitted grid is generated at each time step so that one of the grid surfaces always coincides with the free surface. An inviscid approximation of the dynamic free-surface boundary condition is applied as the boundary conditions for the velocity and pressure on the free surface. To validate the computational method and the computer code developed in the present study, the numerical computations are carried out for both Wigley parabolic hull and Series 60 $C_B=0.6$ ship model and the computational results are compared with the experimental data.

  • PDF

A VOLUME OF FLUID METHOD FOR FREE SURFACE FLOWS AROUND SHIP HULLS (선체주위 자유수면 유동 해석을 위한 VOF법 연구)

  • Park, I.R.
    • Journal of computational fluids engineering
    • /
    • v.20 no.1
    • /
    • pp.57-64
    • /
    • 2015
  • This paper describes a volume of fluid(VOF) method, mRHRIC for the simulation of free surface flows around ship hulls and provides its validation against benchmark test cases. The VOF method is developed on the basis of RHRIC method developed by Park et al. that uses high resolution differencing schemes to algebraically preserve both the sharpness of interface and the boundedness of volume fraction. A finite volume method is used to solve the governing equations, while the realizable ${\kappa}-{\varepsilon}$ model is used for turbulence closure. The present numerical results of the resistance performance tests for DTMB5415 and KCS hull forms show a good agreement with available experimental data and those of other free surface methods.

RANS Computation of Turbulent free Surface Flow around a Self Propelled KLNG Carrier (LNG 운반선의 자유수면을 포함한 자항상태 난류유동장의 수치해석)

  • Kim, Jin;Park, Il-Ryong;Kim, Kwang-Soo;Van, Suak-Ho
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.42 no.6 s.144
    • /
    • pp.583-592
    • /
    • 2005
  • The turbulent free surface flow around a self-propelled KRISO 138K LNG Carrier is numerically simulated using the finite volume based multi-block RANS code, WAVIS developed at HRISO. The realizable k-$\varepsilon$ turbulence model with a wail function is employed for the turbulence closure. The free surface is captured with the Level-Set method and body forces are used to model the effects of a propeller without resolving the detail blade flow. In order to obtain an accurate free surface solution and stable convergence, the computations are executed with a proper fine grid refinement around the free surface and with an adoption of implicit discretization scheme for the Level-Set formulation. The computed velocity vectors at the several stations and wave patterns show a good agreement with the experimental results measured at the KRISO towing tank.

Analysis of Resistance Performance of Modern Commercial Ship Hull Form using a Level-Set Method (Level-Set법을 이용한 일반상선의 저항성능 해석)

  • Park, Il-Ryong;Kim, Jin;Van, Suak-Ho
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.41 no.2
    • /
    • pp.79-89
    • /
    • 2004
  • The viscous free surface flow around KRISO container ship (KCS) is computed using the finite volume based multi block RANS code, WAVIS developed at KRISO. The free surface is captured with the Level-Set method and the realizable k-$\varepsilon$ model is employed for turbulence closure. The computations are carried out at model scale. For accurate free surface solution and its stable convergence the computations are performed with a suitable grid refinement around the free surface by applying an implicit discretization method based on a finite volume method to the Level-Set formulation. In all computational cases the numerical results agree well with experimental measurements.

Computation of Turbulent Flow around a Ship Model with Free-Surface (자유표면을 포함한 선체주위 난류유동 해석)

  • Jung-Joong Kim;Hyoung-Tae Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.38 no.1
    • /
    • pp.1-8
    • /
    • 2001
  • The computations of the turbulent flow around the ship models with the free-surface effects were carried out. Incompressible Reynolds-Averaged Navier-Stokes equations were solved by using an explicit finite-difference method with the nonstaggered grid system. The method employed second-order finite differences for the spatial discretization and a four-stage Runge-Kutta scheme for the temporal integration. For the turbulence closure, a modified Baldwin-Lomax model was exploited. The location of the free surface was determined by solving the equation of the kinematic free-surface condition using the Lax-Wendroff scheme and a free-surface conforming grid was generated at each time step so that one of the grid boundary surfaces always coincides with the free surface. An inviscid approximation of the dynamic free-surface boundary condition was applied as the boundary conditions for the velocity and pressure on the free surface. To validate the computational method developed in the present study, the computations were carried out for beth Wigley and Series 60 $C_B=0.6$ ship model and the computational results showed good agreements with the experimental data.

  • PDF

Numerical Analysis of Free Surface Flow around Blunt Bow Ship Model (뭉뚝한 선수 선형 주위 자유수면 유동 수치 해석)

  • Park, Il-Ryong;Suh, Sung-Bu;Kim, Jin
    • Journal of Ocean Engineering and Technology
    • /
    • v.26 no.1
    • /
    • pp.9-16
    • /
    • 2012
  • This paper presents the numerical results of a simulation of the free surface flow around a blunt bow ship model and focuses on the validation of the proposed method with a brief investigation of the relation between the resistance and free surface behavior. A finite volume method based on the Reynolds Averaged Navier-Stokes (RANS) approach is used to solve the governing flow equations, where the free surface, including wave breaking,is captured by using a two-phase Level-Set (LS) method. For turbulence closure, a two equation k-${\varepsilon}$ model with the standard wall function technique is used. Finally, the numerical results are compared with the available experimental data, showing good agreement.

Finite Element Analysis of Forming Processes With Free Surface Contact Algorithm (성형공정의 자유 경계면 접촉에 관한 유한요소 해석)

  • 한영원;임용택
    • Transactions of Materials Processing
    • /
    • v.4 no.1
    • /
    • pp.48-58
    • /
    • 1995
  • In this study, a contact algorithm for the finite element analysis of free surface contact problem in materials forming is presented. The proposed contact algorithm consists of two parts. The first is the contact searching part, and the second, the constraint part. The contact searching algorithm does not require any a priori knowledge of the pairs of contact nodes or segments and the impenetrability constraint is satisfied using the penalty function scheme. void colsure in open-die forging was simulated to verify the accuracy and capability of the currently developed contact algorithm. The simulation results, obtained from ABAQUS simulation, were compared well to the experimental data available in the literature.

  • PDF

Application of Non-hydrostatic Free Surface Model for Three-Dimensional Viscous Flows (비정수압 자유수면 모형의 3차원 점성 흐름에의 적용)

  • Choi, Doo-Yong
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.4
    • /
    • pp.349-360
    • /
    • 2012
  • A horizontally curvilinear non-hydrostatic free surface model that was applicable to three-dimensional viscous flows was developed. The proposed model employed a top-layer equation to close kinematic free-surface boundary condition, and an isotropic k-${\varepsilon}$ model to close turbulence viscosity in the Reynolds averaged Navier-Stokes equation. The model solved the governing equations with a fractional step method, which solved intermediate velocities in the advection-diffusion step, and corrects these provisional velocities by accounting for source terms including pressure gradient and gravity acceleration. Numerical applications were implemented to the wind-driven currents in a two-dimensional closed basin, the flow in a steep-sided trench, and the flow in a strongly-curved channel accounting for secondary current by the centrifugal force. Through the numerical simulations, the model showed its capability that were in good agreement with experimental data with respect to free surface elevation, velocity, and turbulence characteristics.