• Title/Summary/Keyword: free motion

Search Result 1,388, Processing Time 0.03 seconds

Analytical solution for analyzing initial curvature effect on vibrational behavior of PM beams integrated with FGP layers based on trigonometric theories

  • Mousavi, S. Behnam;Amir, Saeed;Jafari, Akbar;Arshid, Ehsan
    • Advances in nano research
    • /
    • v.10 no.3
    • /
    • pp.235-251
    • /
    • 2021
  • In the current study, the free vibrational behavior of a Porous Micro (PM) beam which is integrated with Functionally Graded Piezoelectric (FGP) layers with initial curvature is considered based on the two trigonometric shear deformation theories namely SSDBT and Tan-SDBT. The structure's mechanical properties are varied through its thicknesses following the given functions. The curved microbeam is exposed to electro-mechanical preload and also is rested on a Pasternak type of elastic foundation. Hamilton's principle is used to extract the motion equations and the MCST is used to capture the size effect. Navier's solution method is selected as an analytical method to solve the motion equations for a simply supported ends case and by validating the results for a simpler state with previously published works, effects of different important parameters on the behavior of the structure are considered. It is found that although increasing the porosity reduces the natural frequency, but enhancing the volume fraction of CNTs increasing it. Also, by increasing the central angle of the curved beam the vibrations of the structure increases. Designing and manufacturing more efficient smart structures such as sensors and actuators are of the aims of this study.

Subsurface structure of a sunspot inferred from umbral flashes

  • Cho, Kyuhyoun
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.2
    • /
    • pp.79.4-80
    • /
    • 2021
  • Sunspots' subsurface structure is an important subject to explain their stability and energy transport. Previous studies suggested two models for the subsurface structure of sunspots: monolithic model and cluster model. However, it is not revealed which model is more plausible so far. We obtain clues about the subsurface structure of sunspots by analyzing the motion of umbral flashes observed by the IRIS Mg II 2796Å slit-jaw images (SJI). The umbral flashes are believed as shock phenomena developed from upward propagating slow magnetohydrodynamic (MHD) waves. If the MHD waves are generated by convective motion below sunspots, the apparent origin of the umbral flashes known as oscillation center will indicate the horizontal position of convection cells. Thus, the distribution of the oscillation centers is useful to investigate the subsurface structure of sunspots. We analyze the spatial distribution of oscillation centers in the merged sunspot. As a result, we found that the oscillation centers distributed over the whole umbra regardless of the convergent interface between two merged sunspots. It implies that the subsurface structure of the sunspot is not much different from the convergent interface, and supports that many field-free gaps may exist below the umbra as the cluster model expected. For more concrete results, we should confirm that the oscillation centers determined by the umbral flashes accurately reflect the position of wave sources.

  • PDF

Buoyancy Engine Independent Test Module Test in the Ocean Engineering Basin (부력엔진 독립시험 모듈 해양공학수조 시험)

  • Chong-Moo Lee;Hyung-Woo Kim;Tae-Hwan Joung
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.6_2
    • /
    • pp.1155-1162
    • /
    • 2023
  • The Korea Research Institute of Ships and Ocean Engineering (KRISO), which is developing the core technology for the buoyancy engine of underwater gliders, has developed a test module that can vertically ascend and descend with a buoyancy engine to verify the performance of the developed buoyancy engine. The independent test module was tested in a 15 metre deep pit in the Ocean Engineering Basin to verify its ability to ascend and descend. In order to test at a shallower depth than the real sea, it was necessary to know the negative buoyancy value during descent and the time at which the buoyancy engine would be activated. To do this, we solved the equation of motion in the vertical direction to obtain these values and applied them to the tank test. To validate the usefulness of solving the equation, we also compared the depth of descent over time measured in the test with the results calculated from the solution.

Wave propagation induced by body forces for free microtubules using cylindrical shell model

  • Muhammad Taj;Ikram Ahmad;Mohamed Amine Khadimallah;Hamdi Ayed;Rana Muhammad Akram Muntazir;Abir Mouldi;Manahil Maqsood;Essam Mohammed Banoqitah;Muzamal Hussain;Abeera Talib;Hajra Khanam;Zafer Iqbal
    • Advances in concrete construction
    • /
    • v.17 no.2
    • /
    • pp.67-73
    • /
    • 2024
  • This paper examines the wave velocity of protein microtubules using a elasticity model that incorporates body forces, based on the structure of these hollow cylinder-like structures., the governing equations are analytically solved to determine how the body forces effect the wave velocity. To analyze the microtubule waves velocity, use microtubules with simply supported ends. The electric field of a dipole vibrating at the same frequency as microtubule vibrations approximates the electric field generated by the rhythmic motion of every charge. The numerical findings for the three modes of frequencies in the longitudinal, radial, and torsional directions for the current conditions are compared with the results of previous calculations.

Dynamic response of FG carbon nanotubes nanoplates embedded in elastic media under moving point load

  • Mohamed A Eltaher;Ismail Esen;Alaa A. Abdelrahman;Azza M. Abdraboh
    • Advances in nano research
    • /
    • v.17 no.3
    • /
    • pp.257-274
    • /
    • 2024
  • This work aims to study and analyse the dynamic size dependent behvior of functionally graded carbon nanotubes (FGCNTs) nanoplates embedded in elastic media and subjected to moving point load. The non-classical effect is incorporated into the governing equations using the nonlocal strain gradient theory (NSGT). Four different reinforcement configurations of the carbon nanotubes (CNTs) are considered to show the effect of reinforcement configuration on the dynamic behvior of the FGCNTs nanoplates. The material characteristics of the functionally graded materials are assumed to be continuously distributed throughout the thickness direction according to the power law. The Hamiltonian principle is exploited to derive the dynamic governing equations of motion and the associated boundary conditions in the framework of the first order shear deformation plate theory. The Navier analytical approach is adopted to solve the governing equations of motion. The obtained solution is checked by comparing the obtained results with the available results in the literature and the comparison shows good agreement. Numerical results are obtained and discussed. Obtained results showed the significant impact of the elastic foundation parameters, the non-classical material parameters, the CNT configurations, and the volume fractions on the free and forced vibration behaviors of the FGCNT nanoplate embedded in two parameters elastic foundation and subjected to moving load.

Arthroscopic Shaving Cystectomy of Popliteal Cyst by using Posteromedial Portal (관절경적 후내측 도달법을 이용한 슬와 낭종의 절삭 절제술)

  • Kwak, Kyoung-Duck;Ahn, Sang-Min;Baek, Seung-Il;Jung, Chan-Jong;Roh, Jae-Su
    • Journal of the Korean Arthroscopy Society
    • /
    • v.10 no.2
    • /
    • pp.153-158
    • /
    • 2006
  • Purpose: We evaluated the effectiveness of arthroscopic shaving cystectomy by using posteromedial portal for popliteal cyst with the correction of valvular mechanism. Materials and Methods: We had treated 15 cases of popliteal cyst with arthroscopic shaving cystectomy by using posteromedial portal from April 2004 to June 2005. The mean duration of follow up was 15 months (range: $12{\sim}28$). Functional results were based on the Rauschning and Lindgren criteria. We estimated operative time, time for regaining pain-free full range of motion and checked sonography for recurrence of the cyst at 12 months after the surgery. Results: The functional results by Rauschning and Lindgren criteria were rated Grade 0 or Grade 1 in all cases at last follow up. The average operation time was 45 minutes (range: $35{\sim}70$). All cases regained pain-free full range of motion within five days after surgery and range of motion was also normal at last follow up. There were no recurrence and no walking disturbance in all cases. Conclusion: Arthroscopic shaving cystectomy by using posteromedial portal is one of the effective alternative method of the treatment for popliteal cyst and it is also useful to correct the valvular mechanism.

  • PDF

Latent Shifting and Compensation for Learned Video Compression (신경망 기반 비디오 압축을 위한 레이턴트 정보의 방향 이동 및 보상)

  • Kim, Yeongwoong;Kim, Donghyun;Jeong, Se Yoon;Choi, Jin Soo;Kim, Hui Yong
    • Journal of Broadcast Engineering
    • /
    • v.27 no.1
    • /
    • pp.31-43
    • /
    • 2022
  • Traditional video compression has developed so far based on hybrid compression methods through motion prediction, residual coding, and quantization. With the rapid development of technology through artificial neural networks in recent years, research on image compression and video compression based on artificial neural networks is also progressing rapidly, showing competitiveness compared to the performance of traditional video compression codecs. In this paper, a new method capable of improving the performance of such an artificial neural network-based video compression model is presented. Basically, we take the rate-distortion optimization method using the auto-encoder and entropy model adopted by the existing learned video compression model and shifts some components of the latent information that are difficult for entropy model to estimate when transmitting compressed latent representation to the decoder side from the encoder side, and finally compensates the distortion of lost information. In this way, the existing neural network based video compression framework, MFVC (Motion Free Video Compression) is improved and the BDBR (Bjøntegaard Delta-Rate) calculated based on H.264 is nearly twice the amount of bits (-27%) of MFVC (-14%). The proposed method has the advantage of being widely applicable to neural network based image or video compression technologies, not only to MFVC, but also to models using latent information and entropy model.

Application of ADE-PML Boundary Condition to SEM using Variational Formulation of Velocity-Stress 3D Wave Equation (속도-응력 변분식을 이용한 3차원 SEM 탄성파 수치 모사에 대한 ADE-PML경계조건의 적용)

  • Cho, Chang-Soo;Son, Min-Kyung
    • Geophysics and Geophysical Exploration
    • /
    • v.15 no.2
    • /
    • pp.57-65
    • /
    • 2012
  • Various numerical methods in simulation of seismic wave propagation have been developed. Recently an innovative numerical method called as the Spectral Element Method (SEM) has been developed and used in wave propagation in 3-D elastic media. The SEM that easily implements the free surface of topography combines the flexibility of a finite element method with the accuracy of a spectral method. It is generally used a weak formulation of the equation of motion which are solved on a mesh of hexahedral elements based on the Gauss-Lobatto-Legendre integration rule. Variational formulations of velocity-stress motion are newly modified in order to implement ADE-PML (Auxiliary Differential Equation of Perfectly Matched Layer) in wave propagation in 3-D elastic media, because a general weak formulation has a difficulty in adapting CFS (Complex Frequency Shifted) PML (Perfectly Matched Layer). SEM of Velocity-Stress motion having ADE-PML that is very efficient in absorbing waves reflected from finite boundary is verified with simulation of 1-D and 3-D wave propagation.

A Study on Path Planning Algorithm of a Mobile Robot for Obstacle Avoidance using Optimal Design Method

  • Tran, Anh-Kim;Suh, Jin-Ho;Kim, Kwang-Ju;Kim, Sang-Bong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.168-173
    • /
    • 2003
  • In this paper, we will present a deeper look on optimal design methods that are related to path-planning for a mobile robot. To control the motion of a mobile robot in a clustered environment, it's necessary to know a suitable trajectory assuming certain start and goal point. Up to now, there are many literatures that concern optimal path planning for an obstacle avoided mobile robot. Among those literatures, we have chosen 2 novel methods for our further analysis. The first approach [4] is based on HJB(Hamilton-Jacobi-Bellman) equation whose solution is the return-function that helps to generate a shortest path to the goal. The later [5] is called polynomial-path-planning approach, in this method, a shortest polynomial-shape path would become a solution if it was a collision-free path. The camera network plays the role as sensors to generate updated map which locates the static and dynamic objects in the space. Therefore, the exhibition of both path planning and dynamic obstacle avoidance by the updated map would be accomplished simultaneously. As we mentioned before, our research will include the motion control of a true mobile robot on those optimal planned paths which were generated by above algorithms. Base on the kinematic and dynamic simulation results, we can realize the affection of moving speed to the stable of motion on each generated path. Also, we can verify the time-optimal trajectory through velocity tuning. To simplify for our analysis, we assumed the obstacles are cylindrical circular objects with the same size.

  • PDF

Sloshing suppression by floating baffle

  • Kang, Hooi-Siang;Md Arif, Ummul Ghafir;Kim, Kyung-Sung;Kim, Moo-Hyun;Liu, Yu-Jie;Lee, Kee-Quen;Wu, Yun-Ta
    • Ocean Systems Engineering
    • /
    • v.9 no.4
    • /
    • pp.409-422
    • /
    • 2019
  • Sloshing is a phenomenon which may lead to dynamic stability and damages on the local structure of the tank. Hence, several anti-sloshing devices are introduced in order to reduce the impact pressure and free surface elevation of liquid. A fixed baffle is the most prevailing anti-sloshing mechanism compared to the other methods. However, the additional of the baffle as the internal structure of the LNG tank can lead to frequent damages in long-term usage as this structure absorbs the sloshing loads and thus increases the maintenance cost and downtime. In this paper, a novel type of floating baffle is proposed to suppress the sloshing effect in LNG tank without the need for reconstructing the tank. The sloshing phenomenon in a membrane type LNG tank model was excited under sway motion with 30% and 50% filling condition in the model test. A regular motion by a linear actuator was applied to the tank model at different amplitudes and constant period at 1.1 seconds. Three pressure sensors were installed on the tank wall to measure the impact pressure, and a high-speed camera was utilized to record the sloshing motion. The floater baffle was modeled on the basis of uniform-discretization of domain and tested based on parametric variations. Data of pressure sensors were collected for cases without- and with-floating baffle. The results indicated successful reduction of surface run-up and impulsive pressure by using a floating baffle. The findings are expected to bring significant impacts towards safer sea transportation of LNG.