DOI QR코드

DOI QR Code

Wave propagation induced by body forces for free microtubules using cylindrical shell model

  • Muhammad Taj (Department of Mathematics, University of Azad Jammu and Kashmir) ;
  • Ikram Ahmad (Department of Chemistry, University of Sahiwal) ;
  • Mohamed Amine Khadimallah (Department of Civil Engineering, College of Engineering in Al-Kharj, Prince Sattam Bin Abdulaziz University) ;
  • Hamdi Ayed (Department of Civil Engineering, College of Engineering, King Khalid University) ;
  • Rana Muhammad Akram Muntazir (Department of Mathematics, Lahore Leads University) ;
  • Abir Mouldi (Department of Industrial Engineering, College of Engineering, King Khalid University) ;
  • Manahil Maqsood (Department of Chemistry, University of Sahiwal) ;
  • Essam Mohammed Banoqitah (Nuclear Engineering Department, Faculty of Engineering, King Abdulaziz University) ;
  • Muzamal Hussain (Department of Mathematics, University of Sahiwal) ;
  • Abeera Talib (Department of Mathematics, Lahore Leads University) ;
  • Hajra Khanam (Department of Mathematics, Lahore Leads University) ;
  • Zafer Iqbal (Department of Mathematics, University of Sargodha)
  • Received : 2023.08.17
  • Accepted : 2024.07.10
  • Published : 2024.02.25

Abstract

This paper examines the wave velocity of protein microtubules using a elasticity model that incorporates body forces, based on the structure of these hollow cylinder-like structures., the governing equations are analytically solved to determine how the body forces effect the wave velocity. To analyze the microtubule waves velocity, use microtubules with simply supported ends. The electric field of a dipole vibrating at the same frequency as microtubule vibrations approximates the electric field generated by the rhythmic motion of every charge. The numerical findings for the three modes of frequencies in the longitudinal, radial, and torsional directions for the current conditions are compared with the results of previous calculations.

Keywords

Acknowledgement

The authors extend their appreciation to the Deanship of Research and Graduate Studies at King Khalid University for funding this work through Large Research Project under grant number RGP2/95/45.

References

  1. Akbas, S.D. (2016), "Forced vibration analysis of viscoelastic nanobeams embedded in an elastic medium", Smart Struct. Syst., Int. J., 18(6), 1125-1143. https://doi.org/10.12989/sss.2016.18.6.1125
  2. Akbas S.D. (2017), "Free vibration of edge cracked functionally graded microscale beams based on the modified couple stress theory", Int. J. Struct. Stabil. Dyn., 17(03), 1750033. https://doi.org/10.1142/S021945541750033X
  3. Alijani, M. and Bidgoli, M.R. (2018), "Agglomerated SiO2 nanoparticles reinforced-concrete foundations based on higher order shear deformation theory: Vibration analysis", Adv. Concrete Constr., Int. J., 6(6), 585-610. https://doi.org/10.12989/acc.2018.6.6.585
  4. Amos, L.A. (2004), "Microtubule structure and its stabilization", Organic Biomolecul. Chem., 2(15), 2153-2160. https://doi.org/10.1039/B403634D
  5. Arulanand am, R., Batenchuk, C., Varette, O., Zakaria, C., Garcia, V., Forbes, N.E. and Diallo, J.S. (2015), "Microtubule disruption synergizes with oncolytic virotherapy by inhibiting interferon translation and potentiating bystand er killing", Nature Commun., 6(1), 1-14. https://doi.org/10.1038/ncomms7410
  6. Atarod, D., Eskand ari-Sedighi, G., Pazhoohi, F., Karimian, S. M., Khajeloo, M. and Riazi, G.H. (2015), "Microtubule dynamicity is more important than stability in memory formation: an in vivo study", J. Molecul. Neurosci., 56(2), 313-319. https://doi.org/10.1007/s12031-015-0535-4
  7. Ba, Z., Wu, M. and Liang, J. (2020), "3D dynamic responses of a multi-layered transversely isotropic saturated half-space under concentrated forces and pore pressure", Appl. Mathe. Modell., 80, 859-878. https://doi.org/10.1016/j.apm.2019.11.014
  8. Brokaw, C.J. (1988), "Bending-wave propagation by microtubules and flagella", Mathe. Biosci., 90(1-2), 247-263. https://doi.org/10.1016/0025-5564(88)90069-7
  9. Chen, C.J., Song, B.A., Yang, S., Xu, G.F., Bhadury, P.S., Jin, L.H., Hu, D.Y., Li, Q.Z., Liu, F., Xue, W. and Lu, P. (2007), "Synthesis and antifungal activities of 5-(3, 4, 5-trimethoxyphenyl)-2-sulfonyl-1, 3, 4-thiadiazole and 5-(3, 4, 5-trimethoxyphenyl)-2-sulfonyl-1, 3, 4-oxadiazole derivatives", Bioorg. Med. Chem., 15(12), 3981-3989. https://doi.org/10.1016/j.bmc.2007.04.014
  10. Christopher, C.G., Pachaivannan, P. and Elamparithi, P.N. (2023), "Study on self-compacting polyester fiber reinforced concrete and strength prediction using ANN", Adv. Concrete Constr., Int. J., 15(2), 85-96. https://doi.org/10.12989/acc.2023.15.2.085
  11. Civalek, O. (2020), "Vibration of functionally graded carbon nanotube reinforced quadrilateral plates using geometric transformation discrete singular convolution method", Int. J. Numer. Methods Eng., 121(5), 990-1019. https://doi.org/10.1002/nme.6254
  12. Civalek, O. and Jalaei, M.H. (2020), "Buckling of carbon nanotube (CNT)-reinforced composite skew plates by the discrete singular convolution method", Acta Mechanica, 231(6), 2565-2587. https://doi.org/10.1007/s00707-020-02653-3
  13. Cottrill, R.A., McKinley, R.S. and Van Der Kraak, G. (2002), "An examination of utilizing external measures to identify sexually maturing female American eels, Anguilla rostrata, in the St. Lawrence River", Environ. Biol. Fishes, 65(3), 271-287. https://doi.org/10.1023/A:1020502119936
  14. de Almeida Engler, J., Van Poucke, K., Karimi, M., De Groodt, R., Gheysen, G., Engler, G. and Gheysen, G. (2004), "Dynamic cytoskeleton rearrangements in giant cells and syncytia of nematode-infected roots", Plant J., 38(1), 12-26. https://doi.org/10.1111/j.1365-313X.2004.02019.x
  15. Demir, A.D. and Livaoglu, R. (2019), "The role of slenderness on the seismic behavior of ground-supported cylindrical silos", Adv. Concrete Constr., Int. J., 7(2), 65-74. https://doi.org/10.12989/acc.2019.7.2.065
  16. Dominguez, R. and Holmes, K.C. (2011), "Actin structure and function", Annual Rev. Biophys., 40, 169-186. https://doi.org/10.1146/annurev-biophys-042910-155359
  17. Elsamak, G. and Fayed, S. (2021), "Flexural strengthening of RC beams using externally bonded aluminum plates: An experimental and numerical study", Adv. Concrete Constr., Int. J., 11(6), 481-492. https://doi.org/10.12989/acc.2021.11.6.481
  18. Enrique, M., Martiel, J.L. and Blanchoin, L. (2015), "Mechanical heterogeneity favors fragmentation of strained actin filaments", Biophys. J., 108(9), 2270-2281. https://doi.org/10.1016/j.bpj.2015.03.058
  19. Enroth, C., Neujahr, H., Schneider, G. and Lindqvist, Y. (1998), "The crystal structure of phenol hydroxylase in complex with FAD and phenol provides evidence for a concerted conformational change in the enzyme and its cofactor during catalysis", Structure, 6(5), 605-617. https://doi.org/10.1016/S0969-2126(98)00062-8
  20. Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys., 54(9), 4703-4710. https://doi.org/10.1063/1.332803
  21. Eringen, A.C. and Edelen, D. (1972), "On nonlocal elasticity", Int. J. Eng. Sci., 10(3), 233-248. https://doi.org/10.1016/0020-7225(72)90039-0
  22. Etienne-Manneville, S. (2013), "Microtubules in cell migration", Annual Review Cell Developm. Biol., 29, 471-499. https://doi.org/10.1146/annurev-cellbio-101011-15571
  23. Fu, T., Wang, X. and Rabczuk, T. (2024), "Broadband low-frequency sound insulation of stiffened sand wich PFGM doubly-curved shells with positive, negative and zero Poisson's ratio cellular cores", Aerosp. Sci. Technol., 147, 109049. https://doi.org/10.1016/j.ast.2024.109049
  24. Gholami, D., Ghaffari, S.M., Shahverdi, A., Sharafi, M., Riazi, G., Fathi, R., Esmaeili, V. and Hezavehei, M. (2018), "Proteomic analysis and microtubule dynamicity of human sperm in electromagnetic cryopreservation", J. Cellular Biochem., 119(11), 9483-9497. https://doi.org/10.1002/jcb.27265
  25. Gilbert-Lucido, M. E., Garcia-Huerta, M., Ruiz-Quintero, N., Gil-Carrasco, F., Garcia-Lopez, A. and Casab-Rueda, H. (2010), "Estudio epidemiologico de glaucoma en poblacion mexicana", Revista Mexicana de Oftalmologia, 84(2), 86-90.
  26. Goodson, H.V. and Jonasson, E.M. (2018), "Microtubules and microtubule-associated proteins", Cold Spring Harbor Perspect. Biol., 10(6), a022608. https://doi.org/10.1101/cshperspect.a022608
  27. Gu, B., Mai, Y.W. and Ru, C.Q. (2009), "Mechanics of microtubules modeled as orthotropic elastic shells with transverse shearing", Acta Mechanica, 207(3), 195-209. https://doi.org/10.1007/s00707-008-0121-8
  28. Han, Q., Li, X. and Chu, F. (2018), "Skidding behavior of cylindrical roller bearings under time-variable load conditions. International Journal of Mechanical Sciences, 135, 203-214. doi: https://doi.org/10.1016/j.ijmecsci.2017.11.013
  29. Havelka, D., Cifra, M., Kucera, O., Pokorny, J. and Vrba, J. (2011), "High-frequency electric field and radiation characteristics of cellular microtubule network", J. Theor. Biol., 286, 31-40. https://doi.org/10.1016/j.jtbi.2011.07.007
  30. Herrmann, E., Call, J., Hernandez-Lloreda, M.V., Hare, B. and Tomasello, M. (2007), "Humans have evolved specialized skills of social cognition: The cultural intelligence hypothesis", Science, 317(5843), 1360-1366. https://doi.org/10.1126/science.1146282
  31. Hussain, M. (2024), Small-scale Computational Vibration of Carbon Nanotubes: Composite Structure, 9781032656229.
  32. Hussain, M. and Naeem, M.N. (2019), "Effects of ring supports on vibration of armchair and zigzag FGM rotating carbon nanotubes using Galerkin's method", Compos. Part B: Eng., 163, 548-561. https://doi.org/10.1016/j.compositesb.2018.12.144
  33. Hyman, A.A., Salser, S., Drechsel, D.N., Unwin, N. and Mitchison, T.J. (1992), "Role of GTP hydrolysis in microtubule dynamics: information from a slowly hydrolyzable analogue, GMPCPP", Molecul. Biol. Cell, 3(10), 1155-1167. https://doi.org/10.1091/mbc.3.10.1155
  34. Iqbal, W., Jalil, M., Khadimallah, M.A., Ayed, H., Naeem, M.N., Hussain, M., Bouzgarrou, S.M., Mahmoud, S.R., Ghand ourah, E., Taj, M. and Tounsi, A. (2020), "Runge-Kutta method for flow of dusty fluid along exponentially stretching cylinder", Steel Compos. Struct., Int. J., 36(5), 603-615. https://doi.org/10.12989/scs.2020.36.5.603
  35. Janson, M.E., de Dood, M.E. and Dogterom, M. (2003), "Dynamic instability of microtubules is regulated by force", J. Cell Biol., 161(6), 1029-1034. https://doi.org/10.1083/jcb.200301147
  36. Job, D., Valiron, O. and Oakley, B. (2003), "Microtubule nucleation", Current Opinion Cell Biol., 15(1), 111-117. https://doi.org/10.1016/S0955-0674(02)00003-0
  37. Joglekar, A.P., Bloom, K.S. and Salmon, E.D. (2010), "Mechanisms of force generation by end-on kinetochore-microtubule attachments", Current Opinion Cell Biol., 22(1), 57-67. https://doi.org/10.1016/j.ceb.2009.12.010
  38. Kalyaanamoorthy, S., Minh, B.Q., Wong, T.K., Von Haeseler, A. and Jermiin, L.S. (2017), "ModelFinder: fast model selection for accurate phylogenetic estimates", Nature Methods, 14(6), 587-589. https://doi.org/10.1038/nmeth.4285
  39. Kasas, S., Kis, A., Riederer, B.M., Forro, L., Dietler, G. and Catsicas, S. (2004), "Mechanical properties of microtubules explored using the finite elements method", ChemPhysChem, 5(2), 252-257. https://doi.org/10.1002/cphc.200300799
  40. Kis, A., Kasas, S., Babic, B., Kulik, A.J., Benoit, W., Briggs, G.A.D., Schonenberger, C., Catsicas, F.S. and Forro, L. (2002), "Nanomechanics of microtubules", Phys. Rev. Lett., 89(24), 248101. https://doi.org/10.1103/PhysRevLett.89.248101
  41. Knoop, S., Hasan, V. G., Ott, H., Morgenstern, R. and Hoekstra, R. (2006), "Single ionization of Na (3s) and Na*(3p) by low energy ion impact", J. Phys. B: Atomic Molecul. Optical Phys., 39(8), 2021. https://doi.org/10.1088/0953-4075/39/8/019
  42. Koshland, D.E., Mitchison, T.J. and Kirschner, M.W. (1988), "Polewards chromosome movement driven by microtubule depolymerization in vitro", Nature, 331(6156), 499-504. https://doi.org/10.1038/331499a0
  43. Ku, N.O., Zhou, X., Toivola, D.M. and Omary, M.B. (1999), "The cytoskeleton of digestive epithelia in health and disease", Am. J. Phys.-Gastrointest. Liver Physiol., 277(6), G1108-G1137. https://doi.org/10.1152/ajpgi.1999.277.6.G1108
  44. Lasser, M., Tiber, J. and Lowery, L.A. (2018), "The role of the microtubule cytoskeleton in neurodevelopmental disorders", Front. Cellul. Neurosci., 12, 165. https://doi.org/10.3389/fncel.2018.00165
  45. Lazar, M., Maugin, G.A. and Aifantis, E.C. (2005), "On dislocations in a special class of generalized elasticity", physica status solidi (b), 242(12), 2365-2390. https://doi.org/10.1002/pssb.200540078
  46. Lazar, M., Agiasofitou, E. and Po, G. (2020), "Three-dimensional nonlocal anisotropic elasticity: a generalized continuum theory of Angstrom-mechanics", Acta Mechanica, 231(2), 743-781. https://doi.org/10.1007/s00707-019-02552-2
  47. Lerner, R.M., Lerner, J.V., Almerigi, J.B., Theokas, C., Phelps, E., Gestsdottir, S., Naudeau, S., Jelicic, H., Alberts, A., Ma, L. and Smith, L.M. (2005), "Positive youth development, participation in community youth development programs, and community contributions of fifth-grade adolescents: Findings from the first wave of the 4-H study of positive youth development", J. Early Adolesc., 25(1), 17-71. https://doi.org/10.1177/02724316042724
  48. Lu, P., Lee, H.P., Lu, C. and Zhang, P.Q. (2006), "Dynamic properties of flexural beams using a nonlocal elasticity model", J. Appl. Phys., 99(7), 073510. https://doi.org/10.1063/1.2189213
  49. Magnasco, M.O. (1994), "Molecular combustion motors", Phys. Rev. Lett., 72(16), 2656. https://doi.org/10.1103/PhysRevLett.72.2656
  50. Mesbah, H.A. and Benzaid, R. (2017), "Damage-based stress-strain model of RC cylinders wrapped with CFRP composites", Adv. Concrete Constr., Int. J., 5(5), 539-561. https://doi.org/10.12989/acc.2017.5.5.539
  51. Meurer-Grob, P., Kasparian, J. and Wade, R.H. (2001), "Microtubule structure at improved resolution", Biochemistry, 40(27), 8000-8008. https://doi.org/10.1021/bi010343p
  52. Milner, B., Squire, L.R. and Kandel, E.R. (1998), "Cognitive neuroscience and the study of memory", Neuron, 20(3), 445-468. https://doi.org/10.1016/S0896-6273(00)80987-3
  53. Mitchison, T. and Kirschner, M. (1984), "Dynamic instability of microtubule growth", Nature, 312(5991), 237-242. https://doi.org/10.1038/312237a0
  54. Monetto, I. and Drugan, W.J. (2004), "A micromechanics-based nonlocal constitutive equation for elastic composites containing rand omly oriented spheroidal heterogeneities", J. Mech. Phys. Solids, 52(2), 359-353. https://doi.org/10.1016/S0022-5096(03)00103-0
  55. Nan, C.W., Bichurin, M.I., Dong, S., Viehland, D. and Srinivasan, G. (2008), "Multiferroic magnetoelectric composites: Historical perspective, status, and future directions", J. Appl. Phys., 103(3), 031101. https://doi.org/10.1063/1.2836410
  56. Nogales, E., Whittaker, M., Milligan, R.A. and Downing, K.H. (1999), "High-resolution model of the microtubule", Cell, 96(1), 79-88. https://doi.org/10.1016/S0092-8674(00)80961-7
  57. Orhan, E., Yuksel, M., Ari, A.B., Yanik, C., Hatipoglu, U., Yagci, A.M. and Hanay, M.S. (2020), "Performance of nano-electromechanical systems as nanoparticle position sensors", Front. Mech. Eng., 6, 37. https://doi.org/10.3389/fmech.2020.00037
  58. Peddieson, J., Buchanan, G.R. and McNitt, R.P. (2003), "Application of nonlocal continuum models to nanotechnology", Int. J. Eng. Sci., 41(3-5), 305-312. https://doi.org/10.1016/S0020-7225(02)00210-0
  59. Pokorny, J., Vedruccio, C., Cifra, M. and Kucera, O. (2011), "Cancer physics: diagnostics based on damped cellular elastoelectrical vibrations in microtubules", Eur. Biophys. J., 40(6), 747-759. https://doi.org/10.1007/s00249-011-0688-1
  60. Prota, A.E., Bargsten, K., Zurwerra, D., Field, J.J., Diaz, J.F., Altmann, K.H. and Steinmetz, M.O. (2013), "Molecular mechanism of action of microtubule-stabilizing anticancer agents", Science, 339(6119), 587-590. https://doi.org/10.1126/science.1230582
  61. Reddy, J. (2007), "Nonlocal theories for bending, buckling and vibration of beams", Int. J. Eng. Sci., 45(2-8), 288-307. https://doi.org/10.1016/j.ijengsci.2007.04.004
  62. Reddy, J.N. and Pang, S.D. (2008), "Nonlocal continuum theories of beams for the analysis of carbon nanotubes", J. Appl. Phys., 103(2), 023511. https://doi.org/10.1063/1.2833431
  63. Safeer, M. and Taj, M. (2019), "Vibrational analysis of microtubules embedded within viscoelastic medium using orthotropic Kelvin like model", Sains Malaysiana, 48(12), 2841-2847. http://dx.doi.org/10.17576/jsm-2019-4812-25
  64. Safeer, M., Taj, M. and Abbas, S.S. (2019), "Effect of viscoelastic medium on wave propagation along protein microtubules", AIP Advances, 9(4), 045108. https://doi.org/10.1063/1.5086216
  65. Samadvand, H. and Dehestani, M. (2020), "A stress-function variational approach toward CFRP-concrete interfacial stresses in bonded joints", Adv. Concrete Constr., Int. J., 9(1), 43-54. https://doi.org/10.12989/acc.2020.9.1.043
  66. Schliwa, M. and Woehlke, G. (2003), "Molecular motors", Nature, 422(6933), 759-765. https://doi.org/10.1038/nature01601
  67. Schoutens, J.E. (2004), "A model describing bending in flagella", J. Biol. Phys., 30(2), 97-122. https://doi.org/10.1023/B:JOBP.0000035852.95326.79
  68. Sept, D., Baker, N.A. and McCammon, J.A. (2003), "The physical basis of microtubule structure and stability", Protein Sci., 12(10), 2257-2261. https://doi.org/10.1110/ps.03187503
  69. Sharif, H., Naeem, M.N., Khadimallah, M.A., Ayed, H., Bouzgarrou, S.M., Al Naim, A.F., Hussain, S., Hussain, M., Iqbal, Z. and Tounsi, A. (2020), "Energy effects on MHD flow of Eyring's nanofluid containing motile microorganism", Adv. Concrete Constr., Int. J., 10(4), 357-367. https://doi.org/10.12989/acc.2020.10.4.357
  70. Shu, X., Li, J. and Shen, M. (2022), "A coupled 2D RBSM-Voronoi model for simulating fracture behaviors of plain concrete components", Adv. Concrete Constr., Int. J., 14(6), 391-400. https://doi.org/10.12989/acc.2022.14.6.391
  71. Singh, S., Krishnaswamy, J.A. and Melnik, R. (2020), "Biological cells and coupled electro-mechanical effects: the role of organelles, microtubules, and nonlocal contributions", J. Mech. Behav. Biomed. Mater., 110, 103859. https://doi.org/10.1016/j.jmbbm.2020.103859
  72. Sirajuddin, M., Rice, L.M. and Vale, R.D. (2014), "Regulation of microtubule motors by tubulin isotypes and post-translational modifications", Nature Cell Biol., 16(4), 335-344. https://doi.org/10.1038/ncb2920
  73. Steinberg, G., Schuster, M., Theisen, U., Kilaru, S., Forge, A. and Martin-Urdiroz, M. (2012), "Motor-driven motility of fungal nuclear pores organizes chromosomes and fosters nucleocytoplasmic transport", J. Cell Biol., 198(3), 343-355. https://doi.org/10.1083/jcb.201201087
  74. Su, F.Q., He, X.L., Dai, M.J., Yang, J.N., Hamanaka, A., Yu, Y.H., Li, W. and Li, J.Y. (2023a), "Estimation of the cavity volume in the gasification zone for underground coal gasification under different oxygen flow conditions", Energy, 285, 129309. https://doi.org/10.1016/j.energy.2023.129309
  75. Su, Y., Shen, Z., Long, X., Chen, C., Qi, L. and Chao, X. (2023b), "Gaussian filtering method of evaluating the elastic/elasto-plastic properties of sintered nanocomposites with quasi-continuous volume distribution", Mater. Sci. Eng.: A, 872, 145001. https://doi.org/10.1016/j.msea.2023.145001
  76. Sun, S., Footer, M. and Matsudaira, P. (1997), "Modification of Cys-837 identifies an actin-binding site in the beta-propeller protein scruin", Molecul. Biol. Cell, 8(3), 421-430. https://doi.org/10.1091/mbc.8.3.421
  77. Sun, G., Kong, G., Liu, H. and Amenuvor, A.C. (2017), "Vibration velocity of X-section cast-in-place concrete (XCC) pile-raft foundation model for a ballastless track", Canadian Geotech. J., 54(9), 1340-1345. https://doi.org/10.1139/cgj-2015-0623
  78. Sweeney, M.T., Thomson, M.J., Pfeil, B.E. and McCouch, S. (2006), "Caught red-hand ed: Rc encodes a basic helix-loop-helix protein conditioning red pericarp in rice", Plant Cell, 18(2), 283-294. https://doi.org/10.1105/tpc.105.038430
  79. Taj, M. and Zhang, J.Q. (2011), "Buckling of embedded microtubules in elastic medium", Appl. Mathe. Mech., 32(3), 293-300. https://doi.org/10.1007/s10483-011-1415-x
  80. Tian, R., Wang, M., Zhang, Y., Jing, X. and Zhang, X. (2024), "A concave X-shaped structure supported by variable pitch springs for low-frequency vibration isolation", Mech. Syst. Signal Process., 218, 111587. https://doi.org/10.1016/j.ymssp.2024.111587
  81. Wang, L. and Brown, A. (2002), "Rapid movement of microtubules in axons", Current Biol., 12(17), 1496-1501. https://doi.org/10.1016/S0960-9822(02)01078-3
  82. Wang, C.Y., Ru, C.Q. and Mioduchowski, A. (2006), "Orthotropic elastic shell model for buckling of microtubules", Phys. Rev. E, 74(5), 052901. https://doi.org/10.1103/PhysRevE.74.052901
  83. Wang, W., Jin, Y., Mu, Y., Zhang, M. and Du, J. (2023), "A novel tubular structure with negative Poisson's ratio based on gyroid-type triply periodic minimal surfaces", Virtual Phys. Prototyp., 18(1), e2203701. https://doi.org/10.1080/17452759.2023.2203701
  84. Weijer, C.J. (2009), "Collective cell migration in development", J. Cell Sci., 122(18), 3215-3223. https://doi.org/10.1242/jcs.036517
  85. Wise, D.R., DeBerardinis, R.J., Mancuso, A., Sayed, N., Zhang, X.Y., Pfeiffer, H.K., Nissim, I., Daikhin, E., Yudkoff, M., McMahon, S.B. and Thompson, C.B. (2008), "Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction", Proceedings of the National Academy of Sciences, 105(48), 18782-18787. https://doi.org/10.1073/pnas.0810199105
  86. Wu, M., Wang, B., Ba, Z., Dai, K. and Liang, J. (2024), "Propagation attenuation of elastic waves in multi-row infinitely periodic pile barriers: A closed-form analytical solution", Eng. Struct., 315, 118480. https://doi.org/10.1016/j.engstruct.2024.118480
  87. Yan, Y., Zhang, K., Qin, G., Gao, B., Zhang, T., Huang, X. and Zhou, Y. (2024), "Phase Engineering on MoS2 to Realize Dielectric Gene Engineering for Enhancing Microwave Absorbing Performance", Adv. Funct. Mater., 2316338. https://doi.org/10.1002/adfm.202316338
  88. Young, T., Hyams, J.S. and Lloyd, C.W. (1994), "Increased cell cycle-dependent staining of plant cells by the antibody MPM-2 correlates with preprophase band formation", Plant Journal, 5(2), 279-284. https://doi.org/10.1046/j.1365-313X.1994.05020279.x
  89. Yu, W., Cook, C., Sauter, C., Kuriyama, R., Kaplan, P.L. and Baas, P.W. (2000), "Depletion of a microtubule-associated motor protein induces the loss of dendritic identity", J. Neurosci., 20(15), 5782-5791. https://doi.org/10.1523/JNEUROSCI.20-15-05782.2000
  90. Zhou, P., Peng, R., Xu, M., Wu, V. and Navarro-Alarcon, D. (2021), "Path planning with automatic seam extraction over point cloud models for robotic arc welding", IEEE Robot. Automat. Lett., 6(3), 5002-5009. https://doi.org/10.1109/LRA.2021.3070828