• Title/Summary/Keyword: free motion

Search Result 1,388, Processing Time 0.029 seconds

Real-time Marker-free Motion Capture System to Create a 3D Virtual Human Model (3차원 가상 인체 생성을 위한 실시간 마커프리 모션캡쳐 시스템)

  • 김성은;이란희;박창준;이인호
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2002.05d
    • /
    • pp.1093-1098
    • /
    • 2002
  • 본 연구실에서 개발한 MIMIC(Motion Interface & Motion Information Capture system)은 동작자의 동작을 획득하고, 동작의 의미를 이해할 수 있도록 설계된 시스템이다. 비전 센서로부터 입력된 영상을 분석하여 동작자의 머리와 두 손, 두 발의 정보를 찾는다. 그리고, 이 정보를 기반으로 팔꿈치나 무릎 등의 중간 관절을 추정한 후 20개의 관절을 가지는 3차원 인체 모델을 구성한다. 이 인체 모델은 동작자의 동작을 실시간으로 흉내낸다. 그러므로, 기존의 마커프리 모션캡쳐 시스템과 달리 완벽한 인체를 구성하기 위한 중간 관절까지 생성함으로써 동작자의 동작을 더욱 자연스럽게 구현할 수 있다.

  • PDF

On the Optimal Distribution of Structural Stiffness in Beam-type Buildings (보형태 빌딩구조물의 최적 강성 분배에 관하여)

  • 최동호
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.10a
    • /
    • pp.314-321
    • /
    • 1998
  • This paper presents motion based design methodology for structures. Current design methodologies are primarily strength-based. Such methods are adequate when strength is expected to govern the design. But as the slenderness of structures increases, motion such as displacement and acceleration becomes the dominant criterion. In this paper, a preliminary design approach for beam-type buildings, where motion dominates the design, is discussed by effectively distributing the magnitude of structural stiffness to control the distribution of displacement under service load. This analytic development is illustrated using a cantilever beam as the structure under static loads, free vibration, and forced vibration.

  • PDF

A Study of Site-Specific Design ground Motions in Earthquake-Resistant Design for Geotechnical Structures (지반구조물 내진설계시 부지특성을 고려한 설계 지반운동연구)

  • 권수영;박인준
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.4 no.2
    • /
    • pp.37-46
    • /
    • 2000
  • 본 논문에서는 부지특성을 고려한 설계지반운동의 산정방법을 연구하였으며 그 해석결과를 지반 구조물의 내진설계에 적용하는 방법을 제안하였다 지진응답 해석시 사용되는 설계응답스펙트럼과 설계시간 이력등의 입력운동의 통제점 위치가 지반구조물 내진설동 지층내 암반운동 그리고 노두운동을 사용하는 방법으로 나눌 수 있고 이에 따라 작용 설계지진운동이 변화하므로 지반구조물의 경계조건에 적합한 방법을 사용하여야 한다.

  • PDF

Wave Motion of Helical Springs with a Circular Section (원형 단면을 갖는 헬리컬 스프링에 대한 파동)

  • Lee, Jae-Hyeong;Heo, Seung-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.5
    • /
    • pp.866-873
    • /
    • 2001
  • The governing partial differential equations of a helical spring with a circular section were derived from Frenet formulas and Timoshenko beam theory. These were solved to give the dispersion relationship between wave number and frequency along with wave form. Wave motions of helical springs are categorized by 4 regimes. In the first regime, the lower frequency area, the torsional and extensional waves of the spring are predominant and two waves are composite wave motions involving lateral motion of the coils and rotation of the coils about a horizontal axis. All waves are propagating in the second regime. The wave of the extensional motion of the spring and one wave of transverse motion of a wire change from travelling waves to near field waves in the third regime. Both waves excited by both axial and transverse motion are predominant in the fourth regime.

A Study on the Pseudoinverse Kinematic Motion Control of 6-Axis Arc Welding Robot (6축 아크 용접 로보트의 의사 역기구학적 동작 제어에 관한 연구)

  • Choi, Jin-Seob;Kim, Dong-Won;Yang, Sung-Mo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.10 no.2
    • /
    • pp.170-177
    • /
    • 1993
  • In robotic arc welding, the roll (rotation) of the torch about its direction vector does not have any effect on the welding operation. Thus we could use this redundant degree of greedom for the motion control of the robot manipulator. This paper presents an algorithm for the pseudo- inverse kinematic motion control of the 6-axis robot, which utilizes the above mentioned redunancy. The prototype welding operation and the tool path are also graphically simulated. Since the proposed algorithm requires only the position and normal vector of the weldine as an input data, it is useful for the CAD-based off-line programming of the arc welding robot. In addition, it also has the advantages of the redundant manipulator motion control, like singularity avoidance and collision free motion planning, when compared with the other motion control method based on the direct inverse kinematics.

  • PDF

Effects of Soil Conditions on the Vibratory Motion of Drilled Shaft (지반조건이 현장 타설 말뚝 선단부의 동적 경계조건에 미치는 영향)

  • 이병식;이원구
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.03b
    • /
    • pp.159-166
    • /
    • 2000
  • Non-destructive out-hole tests, impact-echo and impact-response are widely applied to evaluate integrity of drilled shafts. In these tests, vibratory motions of drilled shafts are interpreted, which induced by impacts on the shaft head. In applying the tests to evaluating integrity of shaft, it has been attended whether the tests have resolutions enough to distinguish existence of slime at between the shaft end and a bearing soil deposit. To distinguish existence of slime by tests, modes of shaft vibrations need to be reasonably interpreted, which generally vary according to a shaft boundary condition such as, a free-free or a free-fixed condition. The boundary condition of a shaft is, however, found to be significantly affected by stiffness of soil deposits around shaft as well as penetration depths of shaft into a bearing soil deposit. Thus, these effects on the boundary condition of a shaft should be considered reasonably in interpreting test results to decide the existence of slime. To investigate the effects, in this study, vibratory motions of shafts constructed in various soil conditions and end penetration depths are examined analytically. Based on the studies, variations of boundary condition are characterized in terms of soil stiffness contrast between a shaft perimeter and a shaft end, and also the ratio of a penetration depth to a shaft length. The results can be applied to verify the applicability of tests to identify the slime.

  • PDF

A Kinematic Analysis of the Upper-limb Motion of Wheelchair Basketball Free Throw Shooting (휠체어 농구 자유투 동작시 상지분절의 운동학적 분석)

  • Han, Hee-Chang;Yoon, Hee-Joong;Lee, Hoon-Pyo
    • Korean Journal of Applied Biomechanics
    • /
    • v.13 no.3
    • /
    • pp.181-197
    • /
    • 2003
  • The Purpose of this study was to examine the kinematic analysis of the upper-limb motion of wheelchair basketball free throw shooting. Three-dimensional kinematic data were obtained from 8 male wheelchair basketball players performing a successful free throw. Players were divided into three groups, according to their IWBF classification(Group 1: 1 point players, Group 2: 2-2.5point players and Group 3:3.5-4 point players) Wheelchair basketball free throw motions were taken by video camera. The three-dimensional coordinates was processed by DLT. Players from Group 1 and 2 tended to release the ball from a lower height, with greater velocity and release angle. Players from Group 1 showed greater shoulder horizontal adduction and horizontal abduction angle, wrist ulnar flexion and radial flexion angle, and trunk angle. but players from Group 2 appeared lower shoulder abduction. Upper limb angular velocity showed most greatly in hands from Group 1, upperarm from Group 2, and forearm from Group 3.

A Study of Comparison with Free Wave Number Between a New Cylinderical Wave Equation and the Wave Equation by Junger and Feit (자유파수를 이용한 새로운 실린더 운동방정식과 Junger and Feit의 실린더 운동방정식의 비교연구)

  • Jo, Heung-Kuk
    • The Journal of the Acoustical Society of Korea
    • /
    • v.15 no.6
    • /
    • pp.47-51
    • /
    • 1996
  • The Cylindrical Shell Equation is one of the fundamental tools in the study of the noise analysis in the cylindrical shell. Therefore, lot of the acousticians induced many cylindrical shell motion equations.[1] In the Reference[6], we introduced the newly induced cylindrical Shell Equation and Junger and Feit's shell equation[5], and computed the free wave number with the linear Equation with the supposed solution, in the case of the free motion of the shell. In this paper, we compared above cylindrical shell equations by using dispersion curve of free wave number and we describe the physical mean for the dispersion curve with ring-frequency and ring-extention-frequency. With this result, we proves the useful of a newly induced cylindrical shell equation and we can analyse the Structure-Borne Sound of the shell with this equation in the application.

  • PDF

Free axial vibration of cracked axially functionally graded nanoscale rods incorporating surface effect

  • Nazemnezhad, Reza;Shokrollahi, Hassan
    • Steel and Composite Structures
    • /
    • v.35 no.3
    • /
    • pp.449-462
    • /
    • 2020
  • This work aims to study effects of the crack and the surface energy on the free longitudinal vibration of axially functionally graded nanorods. The surface energy parameters considered are the surface stress, the surface density, and the surface Lamé constants. The cracked nanorod is modelled by dividing it into two parts connected by a linear spring in which its stiffness is related to the crack severity. The surface and bulk material properties are considered to vary in the length direction according to the power law distribution. Hamilton's principle is implemented to derive the governing equation of motion and boundary conditions. Considering the surface stress causes that the derived governing equation of motion becomes non-homogeneous while this was not the case in works that only the surface density and the surface Lamé constants were considered. To extract the frequencies of nanorod, firstly the non-homogeneous governing equation is converted to a homogeneous one using an appropriate change of variable, and then for clamped-clamped and clamped-free boundary conditions the governing equation is solved using the harmonic differential quadrature method. Since the present work considers effects of all the surface energy parameters, it can be claimed that this is a comprehensive work in this regard.

Dynamic stiffness approach and differential transformation for free vibration analysis of a moving Reddy-Bickford beam

  • Bozyigit, Baran;Yesilce, Yusuf
    • Structural Engineering and Mechanics
    • /
    • v.58 no.5
    • /
    • pp.847-868
    • /
    • 2016
  • In this study, the free vibration analysis of axially moving beams is investigated according to Reddy-Bickford beam theory (RBT) by using dynamic stiffness method (DSM) and differential transform method (DTM). First of all, the governing differential equations of motion in free vibration are derived by using Hamilton's principle. The nondimensionalised multiplication factors for axial speed and axial tensile force are used to investigate their effects on natural frequencies. The natural frequencies are calculated by solving differential equations using analytical method (ANM). After the ANM solution, the governing equations of motion of axially moving Reddy-Bickford beams are solved by using DTM which is based on Finite Taylor Series. Besides DTM, DSM is used to obtain natural frequencies of moving Reddy-Bickford beams. DSM solution is performed via Wittrick-Williams algorithm. For different boundary conditions, the first three natural frequencies that calculated by using DTM and DSM are tabulated in tables and are compared with the results of ANM where a very good proximity is observed. The first three mode shapes and normalised bending moment diagrams are presented in figures.