• Title/Summary/Keyword: free motion

Search Result 1,388, Processing Time 0.029 seconds

A Deformation Model of a Bag-Finger Skirt and the Motion Response of an ACV in Waves (Bag-Finger형 스커트의 변형모델과 규칙파중 공기부양선의 운동해석)

  • G.J. Lee;K.P. Rhee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.29 no.2
    • /
    • pp.48-59
    • /
    • 1992
  • In this paper, the effects of a skirt deformation on the responses of an Air Cushion Vehicle in waves are investigated. The air in the bag and in the plenum chamber is assumed to be compressible and to have a uniform instantaneous pressure distribution in each volume. The free surface deformation is determined in the framework of linear potential theory by replacing the cushion pressure with the pressure patch moving uniformly with an oscillating strength. And the bag-finger skirt is assumed to be deformed due to the pressure disturbance while its surface area remained constant. The restoring force and moment due to the deformation of bag-finger skirt from the equilibrium shape is included in the equations of hearse and pitch motions. The numerical results of motion responses due to various ratios of the bag and cushion pressure or bag-to-finger depth ratios are shown.

  • PDF

Analysis of Biomechanical Effect of the Subtalar Sling Ankle Taping (거골하 관절 현수 테이핑의 생체 역학적 효과 분석)

  • Choi, Mun-Suk;Jeon, Hye-Seon;Kim, Young-Ho
    • Korean Journal of Applied Biomechanics
    • /
    • v.17 no.1
    • /
    • pp.135-144
    • /
    • 2007
  • The purpose of this study was to identify the effect of the subtalar sling ankle taping, by measuring changes in peak plantar pressure and subtalar angle during jump landing and walking in healthy subjects with subtalar sling ankle taping applied of the ankle joint. Fifty healthy subjects(8 males and 7 female, aged 22 to 25) were randomly divided into a participated in this study. They were free of musculoskeletal injury and neurologic deficit in lower extremity. The subjects were asked to perform 5M walking and single leg jump landing by under the guidance of physical therapists. Subtalar motions were typically measured as the angle made between the posterior aspect of the calcaneous and the posterior aspect of the lower leg during walking with taping or not. This measurement were made using a video system (30Hz sampling rate, rectified 60 Hz sampling rate). At the same time, peak lateral and vertical pressure were investigated using pressure distribution platforms(MatScan system) under foot during walking and single leg jump landing with taping or not. Statistical analysis was done by paired t-test and intraclass correlation coefficient [ICC(3.1)], using software SPSS. We have recently demonstrated significantly altered patterns of subtalr joint and peak plantar pressure when applied subtalar sling ankle taping(p<.05). Inversion angle of subtalar joint significantly decreased with taping(p<.05). The result suggest that pressure patterns observed in subjects are likely to result due to significant decrease in stress on ankle joint structures during jump landing and walking. Also, the result that the subtalar sling ankle taping procedure provides greater restiction of motion associated with ankle inversion. However, this study involved asymptomatic subjects without history of ankle inversion injury, further research is needed to assess the motion restraining effect of the subtalar sling ankle taping in subjects with lateral ankle instability.

Design of a Robotic Device for Effective Shoulder Rehabilitation (효과적인 견관절 재활을 위한 로봇의 설계)

  • Lee, Kyoung-Soub;Park, Jeong-Ho;Park, Hyung-Soon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.8
    • /
    • pp.505-510
    • /
    • 2017
  • This paper presents a low-cost robotic device for shoulder rehabilitation, which is capable of treating various shoulder disabilities. A 3-DOF passive shoulder joint tracking module was designed to allow for translational motion of the shoulder joint center during arm swing, which is essential for natural shoulder movement. The weight of the user's arm and the device were compensated for by springs, to enable gravity-free shoulder motion. In order to reduce the device's cost, only one actuator was used, which can be aligned with the user's shoulder joint in various orientations. The device is capable of implementing five representative shoulder motions, including flexion/extension, abduction/adduction, horizontal abd/adduction, internal/external rotation, and oblique raise. The proposed low-cost shoulder rehabilitation robot is expected to provide effective rehabilitation for patients with various shoulder impairments.

Numerical Analysis of Wave-Current Interaction Phenomenon Using the Spectral Element Method (스펙트랄요소법(SEM)을 이용한 파랑-조류 상호작용 현상 수치해석 연구)

  • Sung, Hong-Gun;Hong, Key-Yong;Kyung, Jo-Hyun;Hong, Sa-Young
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.181-186
    • /
    • 2006
  • In this paper, generation mechanisms of ocean freak waves are briefly introduced in the context of wave-current interaction phenomena. The present model of the fluid motion is based on the Navier-Stokes equations incorporating velocity-pressure formulation because of need to model the nonlinear wave interaction with spatially non-uniform current field. In order to deal with the free surface motion, an Arbitrary Lagrangian-Eulerian (ALE) description is adopted. As an accurate and efficient numerical tool, the spectral element method is presented with general features and specific treatment for the wave-current interaction problem. As an intermediate stage of development, solution procedure and characteristics aspects of the present modeling and numerical method are addressed in detail, and preliminary numerical results prove its accuracy and convergence.

  • PDF

Performance Evaluation of an Axisymmetric Floating Wave Power Device with an Oscillating Water Column in the Vertical Cylinder (진동 수주형 축대칭 부유식 파력발전장치의 성능평가)

  • Park, Woo-Sun;Jeong, Shin Taek;Choi, Hyukjin;Lee, Uk Jae
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.30 no.1
    • /
    • pp.29-38
    • /
    • 2018
  • In order to evaluate the performance of the floating wave power, which is an axisymmetric oscillating water column type, linearized free surface boundary condition considering the influence of PTO (power takeoff) was derived and a finite element numerical model was established. Numerical experiments were carried out by varying cylinder length, skirt length, and depth of water, which are design parameters that can change the resonance of water column in cylinder and heave resonance of the float, which is considered to affect the power generation efficiency. Finally, the basic data necessary for the optimum design of the power generation system were obtained. As a result, the efficiency of the power generation system is dominated by the heave motion resonance of the float rather than the water column resonance in the cylinder, and the resonance condition for the heave motion can be changed efficiently by attaching the skirt to the outside of the buoy.

Human Action Recognition Via Multi-modality Information

  • Gao, Zan;Song, Jian-Ming;Zhang, Hua;Liu, An-An;Xue, Yan-Bing;Xu, Guang-Ping
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.739-748
    • /
    • 2014
  • In this paper, we propose pyramid appearance and global structure action descriptors on both RGB and depth motion history images and a model-free method for human action recognition. In proposed algorithm, we firstly construct motion history image for both RGB and depth channels, at the same time, depth information is employed to filter RGB information, after that, different action descriptors are extracted from depth and RGB MHIs to represent these actions, and then multimodality information collaborative representation and recognition model, in which multi-modality information are put into object function naturally, and information fusion and action recognition also be done together, is proposed to classify human actions. To demonstrate the superiority of the proposed method, we evaluate it on MSR Action3D and DHA datasets, the well-known dataset for human action recognition. Large scale experiment shows our descriptors are robust, stable and efficient, when comparing with the-state-of-the-art algorithms, the performances of our descriptors are better than that of them, further, the performance of combined descriptors is much better than just using sole descriptor. What is more, our proposed model outperforms the state-of-the-art methods on both MSR Action3D and DHA datasets.

Block Matching Algorithm Using an Adaptive Matching Block for Object Tracking (객체추적을 위한 적응적 정합 블록을 이용한 블록정합 알고리즘)

  • Kim, Jin-Tea;Ahn, Soo-Hong;Oh, Jeong-Su
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.2
    • /
    • pp.455-461
    • /
    • 2011
  • In object tracking using the block mating algorithm, it is not proper to use a fixed matching block to track an object of which size may be various and can be changed at any time. This paper defines an adaptive matching block for the dynamic environment and proposes a block matching algorithm for it. The matching block is composed of a main-block of $10{\times}10$ pixels and 8 sub-blocks of $6{\times}6$ pixels in a wide area of $42{\times}42$ pixels, the main-block located its center is used as an object block, and the sub-blocks located its boundary are used as candidates for the object block. The proposed algorithm extracts the object blocks from the sub-blocks by using their motion vectors for 10 previous frames and performs the block matching with the main block and them. The experiments for perform estimation show that the proposed algorithm extracts just valid object blocks from the matching block and keeps an object having free movement in image center area.

EMG effects of abdominal muscle on multiple forms of exercise (여러 형태의 복부 운동에 대한 복근의 EMG 효과)

  • Yoon, Wan-Young;Cho, Seok-Cheol
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.2
    • /
    • pp.309-313
    • /
    • 2019
  • This study examined the response of the EMG of URA, LRA, IO, EO and RFM of various types of abdominal motion (crunch, spine V-up on ball, prone V-up on slide board, prone V-up on TRX, and prone V-up power wheel). The subjects performed anisometric contact of abs during these exercises. Tests have shown that there were no statistically significant differences between EO, URA and LRA between any movements. However, during the inspection of IO, the positive-wawed V-up motion showed significantly greater muscle activity than during the slide movement. Also, EMG activity during crunch was significantly lower than any other five exercises. These results indicate that in the implementation of equilateral absolutism, the equipment-free based exercise gives an impetus similar to equipment-based exercise. Abdominal muscle tissue is considered one of the five components that make up an individual's core. The abdominal muscles also ensure proper functioning of the lumbar spine. Although all abdominal muscles contribute to lumbar stabilization, TA & IO has been shown to perform major stabilizers.

Ground response analysis of a standalone soil column model for IDA of piled foundation bridges

  • Hazem W. Tawadros;Mousa M. Farag;Sameh S.F. Mehanny
    • Earthquakes and Structures
    • /
    • v.24 no.4
    • /
    • pp.289-301
    • /
    • 2023
  • Developing a competent soil-bridge interaction model for the seismic analysis of piled foundation bridges is of utmost importance for investigating the seismic response and assessing fragility of these lifeline structures. To this end, ground motion histories are deemed necessary at various depths along the piles supporting the bridge. This may be effectively accomplished through time history analysis of a free-field standalone soil column extending from bedrock level to ground surface subjected to an input bedrock motion at its base. A one-dimensional site/ground response analysis (vide one-directional shear wave propagation through the soil column) is hence conducted in the present research accounting for the nonlinear hysteretic behavior of the soil stratum encompassing the bridge piled foundation. Two homogeneous soil profiles atop of bedrock have been considered for comparison purposes, namely, loose and dense sand. Analysis of the standalone soil column has been performed under a set of ten selected actual bedrock ground motions adopting a nonlinear time domain approach in an incremental dynamic analysis framework. Amplified retrieved PGA and maximum soil shear strains have been generally observed at various depths of the soil column when moving away from bedrock towards ground surface especially at large hazards associated with high (input) PGA values assigned at bedrock. This has been accompanied, however, by some attenuation of the amplified PGA values at shallower depths and at ground surface especially for the loose sand soil and particularly for cases with higher seismic hazards associated with large scaling factors of bedrock records.

Development of Respiratory Training System Using Individual Characteristic Guiding Waveform (환자고유의 호흡 패턴을 적용한 호흡 연습장치 개발 및 유용성 평가)

  • Kang, Seong-Hee;Yoon, Jai-Woong;Kim, Tae-Ho;Suh, Tae-Suk
    • Progress in Medical Physics
    • /
    • v.23 no.1
    • /
    • pp.1-7
    • /
    • 2012
  • The purpose of this study was to develop the respiratory training system using individual characteristic guiding waveform to reduce the impact of respiratory motion that causes artifact in radiotherapy. In order to evaluate the improvement of respiratory regularity, 5 volunteers were included and their respiratory signals were acquired using the in-house developed belt-type sensor. Respiratory training system needs 10 free breathing cycles of each volunteer to make individual characteristic guiding waveform based on Fourier series and it guides patient's next breathing. For each volunteer, free breathing and guided breathing which uses individual characteristic guiding waveform were performed to acquire the respiratory cycles for 3 min. The root mean square error (RMSE) was computed to analyze improvement of respiratory regularity in period and displacement. It was found that respiratory regularity was improved by using respiratory training system. RMSE of guided breathing decreased up to 40% in displacement and 76% in period compared with free breathing. In conclusion, since the guiding waveform was easy to follow for the volunteers, the respiratory regularity was significantly improved by using in-house developed respiratory training system. So it would be helpful to improve accuracy and efficiency during 4D-RT, 4D-CT.