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Abstract

In this paper, the effects of a skirt deformation on the responses of an Air Cushion Vehicle in waves
are investigated. The air in the bag and in the plenum chamber is assumed to be compressible and
to have a uniform instantaneous pressure distribution in each volume. The free surface deformation
is determined in the framework of linear potential theory by replacing the cushion pressure with the
pressure patch moving uniformly with an oscillating strength. And the bag-finger skirt is assumed to
be deformed due to the pressure disturbance while its surface area remained constant. The restoring
force and moment due to the deformation of bag-finger skirt from the equilibrium shape is included
in the equations of heave and pitch motions.

The numerical results of motion responses due to various ratios of the bag and cushion pressure

or bag-to-finger depth ratios are shown.
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1. Introduction

Since the first Air Cushion Vehicle, applying the idea
of Christopher Cockerell, the SR.N1, was launched in
England at 1959, many ACV’s have been built and used
for various applications because of their many advantages
such as high speed and amphibiousness etc.. Theoretical
and experimental works to analyze a craft ride quality
have been performed by many researchers throughout
the world. But analytical models for computing the respo-
nse of hovercraft have not yet been developed sufficiently
to be used as a design tool owing to the absence of ade-
quate experimental data on some of the related mecha-
nism[1-31.

The analysis of responses of an ACV over regular wa-
ves was started by Reynolds[4]. He developed a lineari-
zed equation of motion by considering a single-plenum
craft with single-degree of freedom in heave. A quadratic
expression for the fan characteristics, the incompressible
Bernoulli equation and the usual equations of continuity
were used in this analysis. Later Reynolds et al.[5] exte-
nded this work to include pitch motion in addition to
heave by adopting a craft with a transverse skirt. The
pressure deviations of the fore and aft compartment from
their equilibrium values were used to formulate the
equation of motion for pitch. The important assumptions
included in both papers were that the skirt hemline ma-
kes no contact with the water surface and the wavy sur-
face is rigid.

The effect of the presence of the water surface upon
the perturbations of pressure in the plenum in a surface
effect ship was examined by Breslin[6], Kim and Tsako-
nas[ 7], and in an ACV by Doctors[ 8, 91. Breslin assumed
that the deformation of the water surface participates
in the generation of the bubble pressure in conjunction
with the actions of seals, fans, etc., and that the deforma-
tion of the wave surface under the oscillatory rectangular
pressure patch, having an infinite beam, in uniform trans-
lation be used to display the way in which the motion
of the water surface participates in the determination
of the pressure variations in the plenum air. His work
was later extended to three-dimension by Kim and Tsa-
konas. They evaluated the wave elevation, the escape

area at the stern and the volume induced by an oscillatory
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rectangular patch in uniform translation for the entire
range of the speed frequency parameter t of practical
interest, from very low to considerably high. Earlier than
the Kim and Tsakonas, Doctors had developed the same
analysis to evaluate the hydrodynamic influence, and he
applied this result to the motion of Air Cushion Vehicle
which was taken by Reynolds. The hydrodynamic influe-
nce was felt through the alteration of the air gap under
the skirt due to water deflection and a change in the
effective flux balance of air in the cushion, which was
assumed to be incompressible. Also he evaluated the non-
linear effect on the motion responses of the craft for
different wave heights. He extended his previous work
to higher Froude numbers and encounter frequencies
of practical interest[ 10, and to include the effect of com-
pressibility of the air by considering only the accumula-
tion term in the continuity equations for the chambers.

Rhee and Leel 10] made a similar analysis to evaluate
the responses of an ACV in uniform translation over re-
gular waves, in which the effects of the height and inclina-
tion of the skirt on the motion responses were examined.
They evaluated the hydrodynamic influence due to cu-
shion pressure by referring to the works by Doctors[9],
but developed a numerical approach that was valid for
the entire range of the parameter t and for a polygonal
pressure patch by use of Stoke’s theorem. In the dynamic
analysis of the air flow in chamber and duct, the adiabatic
and isentropic flow was applied directly to the equations
of the mass conservation.

The object of this paper is to present a method for
analyzing the skirt deformation due to pressure variations
and surface elevations, and to evaluate the heave and
pitch responses of an ACV with a deformable bag and
finger skirt in uniform translation over regular waves.
A model for the deformation of the bag-finger skirt is
proposed. The hydrodynamic influence and the air flow
are considered in line with Rhee and Lee(10], but the
skirt deformation, its effects on the air flow and skirt
forces are included.

The heave and pitch response of an ACV with bag-fi-
nger skirt to regular waves are calculated for different
ratios of the bag and cushion pressure and for different
shapes of bag-finger skirt by using the linear equations

of motion. Our results show that the shape of bag-finger
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skirt has an important effect on the motion responses

in the neighborhood of the helmholtz resonance.

2. Model of Skirt Deformation

A bag and finger type skirt, which is shown in Fig.
1, is considered in this study. The skirt deformation is
assumed to depend on the restoring coefficient, the pres-
sure in the bag and in the plenum chamber, and the
free surface elevation. An analysis of the restoring force
of the bag is given in Appendix for a simplified model.

In this chapter, the skirt deformation due to the pres-

sure changes and the free surface elevation is examined.

Fig. 1 Schematic view of a bag-finger skirt

N/

Fig. 2 Model of a craft and coordinate system

2.1 Deformation due to the Pressure Changes in
the Bag
When the pressure in the bag P, increases, the bag
moves downward. The pressure is understood as a gage
pressure hereafter. Suppose that pressure P; is increased
by AP; and that the bag is deformed by Ay. The upward
force variation acting on the bag is

ol F, o7&

—bAP;,

and on the finger is
—P. 1, cos(y +Ay) + Pd, cosy=Pl, sin yA v,

where P: is the pressure in the plenum chamber. The
restoring force of the bag is expressed as,

PdAy.
From the equilibrium condition of forces, we can obtain
the angular deformation Ay as
_ —bAP,
 Pd = Plsiny’

Since the force acting on the bag and its counterpart

Ay 2D

on the structure cancel each other, the force acting on

the skirt system due to the pressure increase AP, beco-

mes
1
PydAy + bAP, = —b (B ~1) AP, (2.2)
where D is defined as
Pl sin
p=1- 2% (23
Pud

From the angular displacement Ay, we obtain the ver-

tical displacement of the lowest point of the finger,

wb
WAy = — —— AP, OXY)
PudD
and the horizontal displacement of the point,
hb
hAy = — —— AP, (2.5)
PudD

2.2 Deformation due to the Pressure Changes in
the Plenum Chamber

As the pressure in the plenum chamber P, increases,
the bag will deform in the upward direction. Suppose
that the pressure P. is increased by AP. and that the
bag is deformed by Ay. The upward force acting on the
bag is changed by

AP (w + [ cos v),
and on the finger is
— APl cos y t+ Pl sin yAy.
And the restoring force of the bag is
PdAvwy.

Similarly, we can obtain the angular displacement Ay

as

Ay = S AP, (2.6)
PuD
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Among the forces acting on the bag, wAP. will be inclu-
ded in the force on the pressurized support area, so we
omit the term wAP, here. Therefore the upward force

acting on the skirt system due to the pressure increase

AP, in the plenum chamber can be represented as

1
PdAy — wAP, = w ( e 1) AP. 27
The vertical displacement of the lowest point of the
finger is
w”
wAy = —— AP, (2.8)
PdD
and the horizontal displacement of the point,
hw
hAy = ——AP. (2.9
PydD

(Positive sign corresponds to the outward direction.)

2.3 Deformation due to the Free Surface Eleva-
tion

As the free surface below the skirt system moves up-
ward, the finger touches the surface and the downward
force acting on the finger is decreased. In consequence,
the bag experiences upward force and the bag deforms
upward and lifts up the finger.

If the skirt system cannot be deformed, the upward
force of the skirt due to the surface elevation can be
represented as

hu
‘ tan v ’

(210

where &, is the elevation of the surface.

Suppose that the bag is deformed by an amount of
angular deformation Ay, then the restoring for of the
bag is

PdAvy.
Furthermore, when the lower part of the finger is immer-
sed, the upward force acting on the finger is
P sin y A v+ cos yAl),
where Al is a wetted length along the finger. Inspecting
the skirt geometry, following relation for Al and Ay is
obtained.

Al = (hy = wAW). (211

sin v
where Al must be positive. Thus Ay must satisfy the

following condition,
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hw
Ay<— . (2.12)
w
From the equilibrium condition of forces, we can obtain
Ay as follows,

hw

€tan "2

Ay = . (2.13)

— : hw
Pd — P.lssiny + P, fan y

In order to satisfy the condition (2.12), the following
ineguality must hold,
Pid — Plsiny 2 0,
which may be rewritten as

p=1- fhsy 5 (2.14)
Pud

If (2.14) is not satisfied, there is no way to satisfy the
equilibrium condition of forces, so the bag continues to
undergo a deformation. However, this will not happen
in real situation, and this just means that the skirt is
in its unstable equilibrium state. When D equals to unity,
the deformation of skirt due to the surface elevation will
be small. And when D is zero, the skirt will be deformed
in such a way that the lowest point of the finger always
remains on the surface. As D becomes smaller, the skirt
will deform more easily due to the surface elevation. D
may be used as the criterion of the skirt responsiveness.
We may rewrite the angular displacement of the bag

due to the surface elevation as

hw

Py
Ay = ———.

w
PdD + P tan y

The upward force acting on the skirt system is then

Pd
PudAy = P,
tany  pap + rw':w
=——[1+D] (215)
tan y

where D’ is defined as follows,

P w 1

,_1~D“Pbdlnnu;

D= (2.16)
D+ L

Py d tany

Comparing this with (2.10), the upward skirt force is inc-

reased by the skirt response-force factor D’
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3. Mathematical Model

The heave and pitch responses of an Air Cushion Vehi-
cle with a bag-finger skirt travelling at a speed of advance
U in a regular waves are examined in this chapter. The
coordinate system and the craft are shown in Figure 2.
The origin of coordinate lies at midship and vertically

at the top of plenum chamber.

3.1 Air Flows
The air pressure and density changes are assumed
to have the adiabatic isentropic relationship, ze.,
P\
Pe = Pa (1 + P—” )

where p, and P, are the density and the pressure of

’ 3D

air in atmospheric condition respectively, and p. and P,
are in the plenum chamber, v is the ratio of specific heat
and is taken as 1.4.

Under the assumption that the air is compressible, and
that the instantaneous pressure is uniform throughout
the volume at any instant in time, the conservation of

mass for the plenum chamber may be written as
d . .
(; (Dch) = pch + pth = chx - they (32)

where V, is the volume of the plenum chamber, @; and
Q. the volumetric flow rate entering into and exiting from
the plenum chamber, respectively. And the dot above
a term stands for a derivative with respect to time. Using
the equation (3.1), the above equation may be rewritten

as

V. . .
P(' - Qi - Qe - Vt- (3.3)
Y (Pt Po)
Similarly, the conservation of mass in the bag and duct

may be written as

Vi o (LtR/E

8
— 2 p= : + Q (34)
@+ P 1+ P,,/Pa) &t

where V; and P, are the volume and pressure in the
bag and duct, respectively, @ the inlet volume flow rate
into the bag and duct, and § is the reciprocal of y.
The flow rate through the fan @, and the pressure
difference across the fan Py(this is normally P, in the

absence of the secondary duct, hence, Py will be the same

ol H-F. o] Vi

as P, hereafter) are assumed to have the relation below.
Pi=Cit G+ C3Q7 (35)

where C’s are constants given from experiments of the
fan characteristics.

The volumetric flow rates are assumed to be governed
by the steady orifice flow law, then @; and Q. can be
represented as follows,

L= (Lpb/fu)& A ( s
1+ P/P, iy 2P = P/p A+ P/P’,
—_— (36)
Q’ = kA’ V/’ 2Pr/pa (1+P[/Pa)5 . (37)

where k is an orifice flow discharge coeffcient, A; the
inlet orifice area into the plenum chamber and A, the
escape area under the skirt.

The rate of change of the plenum chamber is assumed
to be

V.=Adz — 20} — Ve + Vi + V, (38)

where A, is the pressurized support area, x. the centroid
of A, and z and 6 denote the heave and pitch displaceme-
nts. And V., is the volume change due to the free surface
deformation (will be explained in the next section), V,
due to incident waves and V due to skirt deformations.

The escape area under the skirt may be written as
Ae = Am + Ns /l (Z—xe_-cow_cw) dl+r|sAes. (3.9)

where A., denotes the escape area at the equilibrium
state, {w and §, are the free surface elevation due to
the cushion pressure and the incident waves respectively,
Ae is the escape area due to the skirt deformation. The
integral has to be carried out along the cushion perimeter.
Since the escape area does not change proportionally to
the relative motion responses, 1, is introduced to evaluate
the escape area properly.

The deviations of the variables from their equilibrium
values are assumed to be small, and the equilibrium va-
lues are denoted by placing subscript ‘o’, henceforth.

We linearize the inlet flow as follows,
Qi = Qipe Pc + Qips P, (3.10)
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where

o pw [ 2Pu—Py B 1
QIP( O kA; \/ o ( P("+Pa+ 2(PM_PM)) ,

i | 2Pw— Pu) 8 1
Qfﬂr‘ -i kA et ( + ) .
Pa Pdo 2Pt Ps)  2(Ph—Pu)
And,
. AP, — P)
Q=rRA | —
U
= QipcPe + Qipp P, (3.11)
where
) 2(P b0 T Pm) 1
Qip(‘: *kAx ’
Puo 2(Pso—Pu)
s Z(I)bﬂ - Pm) 1 8
Q:ph:kAi ( - ) .
Pdo Z(Pbo —Pm) Z(PM—Pa)

And the escape area,
A=Az + A+ A P. + A Pr + Auk,  (312)

where { is the amplitude of the incident wave and

Aa = r]s/l dl,
Aeez MNs /l Xdl,

Age = Jdl,
epc — Ns / PbﬂdD /Q
A= - | = a,
L PR

Ao = 'ns/lgdl.

G and §, are the surface elevations due to the cushion
pressure and of the incident wave, respectively. And the
outlet flow becomes

Q = Q2+ Qb+ Qupe P + Qepp Pr + Quul, (3.13)

where

Qu 2P oo/ pm 2

v
v
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Qes = / ZPm// Peo Ae&

_— 1 8
= ' '// o epe o | T, T T T s
U=k 2ol (A4 2P, 2Po + PB)D

Ql'[zh =k \“"‘ ZPt'n/ Peo Arph,

Quw =k " 2Pm/pm Ane.

\

And the time rate of volume change is

Vo= Vi + Vi + Ve P+ VP + Vi, (3.14)
where
_P,(1+D"
Vz = Vt — Ns (w2 + hz) dl,
! Py tan v
V. Ax. + (‘+h2)——(1 D) /!
= - r s w xai,
? den Prod tan y
Vo = —A +/(2+h2) 2 a+
pe cow w PodD Ns
P, (1+D)
/(w2+h2) Gudl,
Pud tan y
Vi = —/(w2+h2) b di
] PwdD
P(1+D")
Vo= —Aa + Ns (wz + hz) - del,
Pyod tan v

whre Vi, is the volume change due to the free surface
deformation excited by the cushion pressure and V,, due
to the incident wave (both will be given in the next sec-

tion).

3.2 Free Surface Deformation

The deformation of free surface due to the cushion
pressure was obtained by Rhee and Lee[10]. We use
their results, and just write down the assumptions and
methods of calculation only here.

The water is assumed to be incompressible and invis-
cid, and the water depth is infinite. The cushion pressure
is replaced with the pressure patch which oscillates and
translates with a constant speed on the otherwise calm
water. The shape of the pressure patch is restricted wi-
thin a polygonal one. The free surface deformation is
obtained using a linear potential theory. The resulting
free surface deformation is proportional to the applied
pressure, i.e.

Sow * Pe
The free surface elevation of the regular head waves

incoming from the positive x-axis is
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Caei(k[x+w]+wt) = w;@ﬁ.,.;) - Cw . C, (3'15)

we=w+ Uk, b=ug

L=e L= g
where {, is a wave amplitude, £ the wave number, w
a circular frequency of incoming wave and w. an encoun-
tering frequency.

The escape area due to the free surface deformation
is obtained by integrating the free surface elevations
along the skirt perimeter, and the volume changes Ve,
Va are obtained by integrating the free surface elevation
over the cushion area. The integration over the cushion
area is transformed to the integral along the skirt perime-

ter by the Stoke’s theorem.

3.3 Skirt Forces
In chapter 2, the force acting on the skirt is analyzed
locally. Each element of the skirt is assumed to move
independently, and the frictional force due to the contact
of the finger with the water surface is neglected.
Forces and moments of the skirt system can be obtai-

ned by integrating the local forces.

Fs:/l dFV.

M, = — /1 xdFy + / (z6 + h) sin pdFu,  (3.16)
1

where dFy and dFy are the vartical and horizontal force
component of the skirt system respectively, and P is the
angle of skirt hemline to the positive x-direction.
From the results in chapter 2, the vertical force of
the skirt system can be obtained as follows,
F. = F.z+ Fe@+ Fp Pc + F Py + Fu§, 317

where

1+ D
E.= —nsPcv dl
I otan y

1+ D
Fo= T]st xdl
! tany

2 —/ Y a4 P /HD’g,uat
i D R ! tan y

Fyp = Bdl
p ' D

1+D
Fw:nst del
! tan y

The bow-down pitching moment is

o) A&, ol7R
M, = Mgz + Mg+ My P. + My, Py + MG, (3.18)

where

1+ D
M, = nPo - xdl — 2 Po )(za+h) sin fdl

an y

_ 1+D
Me’— A-nst T del_ T\st (ZG+h)Sin Bxdl
! tan y !

M /w 4 P/1+D'
c = = XAl T Nsdw ~— Lrdl
g ! D n ! tanwg

+ T“P””/x (z¢+ k) sin BEdl

b
Mgb:"’/_'xd
1 D

1
_ 1+ D
M, = =P, | — Lxdl+nPn | (26+h) sinpl.dl,
! tany l
where z¢ is the vertical position of the center of gravity.

3.4 Equations of Motions
The heave and pitch equations of motion about the

origin of courdinate is

mz — mxc6 = AP, + F, (319)
16 — mxcz = —Acx P+ M, (3.200

whrer m is the mass of the craft and I the moment of
inertia, x¢ the longitudinal position of the center of gra-
vity.

The equations of conservation of mass in the plenum

chamber and the bag and duct are

Cpc Pc = Qi - Qe - Va (321)
Coly= ~Qi+ @ (322)
where
8V, 112
Cp = , Cw= ¢ . (3.23)
P, + P, Py, + Pa

The craft motions can be obtained by solving these
four equations simultaneously. Using the variables appea-
red in the preceding sections, we may rewrite the equa-

tions of motions as

Vz+ Quz+ Vot Qe+ (Coet Vie) Pet Qupe— Qi) Pe
+ Vs Pyt (Qepp— Qipn) Po= — Vil — Qul, (324)

Qipe P.+Cp Pyt (Q;pb" ) Py=0, (3.25)

Cy + 2C5Qp

Transactions of SNAK, Vol. 29, No. 2, May 1992
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mz —Fg—mxc—Fb— A +F,) P~ F P,=F.C, (3.26)

—mxz —Mgz+10—Mob+ (Ax.+ M) Pe—Mp Po= ML,
32D

4. Numerical Results

To investigate the effects of a skirt deformation on
the motion responses of an ACV in waves, the heave
and pitch response of a Plenum-Chamber Type ACV with
a bag-finger type skirt in regular head waves have been
calculated in a framework of a linear theory. The schema-
tic views of the craft and the bag-finger particulars are
given in Table 1 and 2. The craft is assumed to have
a constant speed in waves, and the motion responses
are calculated in a frequency domain at cushion length
based Froude numbers of 1.0 and 1.5. The cushion length
of the craft is 20 m. In all figures, the motion responses
of the craft having the same principal particulars in Table
1, but with a rigid skirt, are shown as a solid line for
reference. The heave response is nondimensionalized by
the incident wave amplitude and the pitch response by

the maximum slope of the incident wave.

Tabte 1 Principal particulars of the craft and
coefficients

B/L 0.5 A/ L* 0.01
m/puL® | 0006 ValL? 0.0125
I/poL® |325X10* ||k 06
x /L 0.05 Ci/pugl 0.04
xc /L 0 Cay/ LP/gpd |00
h/B 0.1 CiL*/ pu - 30.

Table 2 Particulars of the bag-finger skirt

I./B 0.07 w/B 0.02
b/B 0.05 v 450
d/B 0.1 s 1

In Fig. 3 and 4, the effect of a ratio of bag pressure
to cushion pressure on the motion response is shown.
In the calculation, the ratio of bag pressure to cushion
pressure is obtained by changing the inlet area. The cal-
culated pressure in the bag, P, is 6257, 4369, and 3484
(N /m®), and these values correspond to the nondimen-
sionalized inlet area, A, / L?, 0.005, 0.01, and 0.015, respec-
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tively, while the cushion pressure is kept constant of the
value of 2412 (N / m®) for these cases. And the skirt res-
ponsiveness factor D is 0.8092, 0.7267, 0.6573 and the
skirt response-force factor D’ 0.1283, 0.1946, 0.2566, res-
pectively. From these figures, the increase of the bag
pressure to cushion pressure ratio decreases the skirt
repsponse-force factor and increases the heave responses.

In Fig. 5 and 6, the motion responses are calculated
for various d /B’s. The calculations are carried out fot
the values of 0.07, 0.10, 0.13, and D and D' are obtained
as 0.6096, 0.7267, 0.7898 and 0.3032, 0.1946, 0.1432, respe-
ctively, The heave response is increased with the value
of d /B, but the increment is not so significant.

In Fig. 7 and 8, the motion responses are calculated
for various & / B's. For the values of b / B, 0.02, 0.05, 0.08,
D and D' are not changed and their values are 0.7267
and 0.1946, respectively. The motion response increases
as b/B decreases.

Fig. 9 and 10 show the effect of w /B on the motion
responses. In this case, D can not be changed and D’
has the values of 0.3761, 0.1946, 0.05534 according to

05 1 2 3 LA s
4.0 i 1 1 1
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© o | | y
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Fig. 3 Motion responses with various A4/L%s at

F,=1.0. solid tine is for the rigid skirt
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Pitch Response
Nondimensionalized

Heave Response
Nondimensionalized
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Pitch Response
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Fig. 5 Motion responses with various d/B's at
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to 05 1 2 3 Ip s
k=]
ol —— 0.02
n- [
8- 3.0 b/8 0.05
oM —-- 0.08
ac
05
S, .,
Q2.0
c
co
GE
-+
504,01
ac
S
b=
0.0 - —
0 2 4 w/Ils 6
2.0
)
@
3'\‘
-t
0o 4.5
Gm
ac
"G
.
Loto
[
]
>E
E ]
©- 0.5
TC
o
z
0.0 — x
o 2 4 W/l &

Fig. 7 Motion responses with various b/B's at

F,=1.0. solid line is for the rigid skirt

Transactions of SNAK, Vol. 29, No. 2, May 1992



Bag-Fingerd 2 Eq Hiwda tuE Fr13de] £330 57

0.5 1 ? ? L/A ?

4.0 L L
®
gu —— 0.02
0 3.0 b/8 ———- 0.06
[=X.) —--~ 0.08
ac
ns
o™ 2.07
c
ca
SE
— ]
o B
ac
o
z
0.0 T B—
[s] 2 4  w/Ljg 6
=]
[T}
QN
0
Crm
owm
ac
no
-~
Tw
c
[T XT)
>E
-~
[X]e]
Irc
o
Z R
0.0 . oty ‘
o 2 4 w/Ijg 8
Fig. 8 Motion responses with various b/B’s at
F,=1.5. solid line is for the rigid skirt
4.0 N S
e}
o
QN -—— 0.00
o 3.0 Ww/B ———. 0.02
owm —_—
ac : 0.04
80
e
&0 2.0
c
co
QE
4 .
a0
ac
o
Z
0.0 Y
<] 2 4 wyvLlfg 6
2.0 I
= Hl
[ N
g i
Ce -5 [
2z i
ac
0w o .
Q-
2o ||
w5 P
>E \
©-rt .
(T} i
rc
[=]
P-4

Fig. 9 Motion responses with various w/B’s at

F,=1.0. solid line is for the rigid skirt

NEEMRERCE $29% 238 19924 5A

L/A
a0 . ?
®
3"‘ -— 0.00
- —— —
@1 3.0 w/8 0.02
owm —--— 0.04
ac
go
— |
Tn 2.0
c
co
3&
-y
havad 1.0
oc
o
z
0.0 T
1] a w\/L/g )
2.0
=)
o
3o
D 1.5
om
ac
go
or 1
o 1.0
c
[1X7)
2z
o4 o.sﬂ
Ic
o
P-4 . N
0.0 T -
0 2 4 wyLig 6
Fig. 10 Motion responses with various w/B's at

F,=1.5. solid line is for the rigid skirt

the different values of w / B of 0.0, 0.02, 0.04, respectively.
The motion response increases as w / B.

Above results may be summarized as follows .| The
skirt response-force factor D’ can be used to predict the
craft motion. The motion response grows much as D’
decreases, and the values of D’ can be easily changed
by changing the values of w/B.

On the other hand, the skirt responsiveness factor D
can be used to predict the skirt deformation, as D decrea-
ses, the skirt deformation becomes large, and a negative
value of D indicates that the unstable skirt deformation
may happen.

However, since D and D’ are not affected by b/B,
a new formulation for D and D’ which includes this effect

seems to be needed.

Conclusions

A simplified model has been developed to explain the
skirt deformation due to the pressure change in the bag
and in the plenum chamber and that due to the water

surface elevation. This model can also predict the skirt
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force.

A series of numerical calculations for the craft motion
has been carried out for the heave and pitch response
for different values of inlet area and for various skirt
parameters. Through this investigation, our findings
are .

1. The motion response grows much as the skirt respo-
nse-force factor [’ decreases.

2. To reduce the motion response by increasing D,
increase of the inlet area, decrease of d /B or decrease
of w/B is needed.

3. The skirt deforms more easily as the skirt responsi-
veness factor D decreases. To reduce D, increase of the
inlet area or decrease of d /B is needed.

The skirt responsiveness factor D and the skirt respo-
nse-force factor I can be used to predict the skirt respo-
nsiveness and the craft motion respectively. We hope
that the comparison with experimental study can be
made, and that an additional factor which can include
the effect of b /B can be found.
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Appendix. The Restoring Coefficient of a Bag

The cross section of the simplified model of a bag which

is used to formulate the restoring forces is shown below.

&

Fig. for appendix

The bag is assumed to be attached to the main structu-
res with hinge, and thus only the restoring force, not
the moment, can be transmitted to the structure. The
lateral force acting on the bag can be represented as
follows,

T (cos w2 + cos y1) = d(Ps — Po). (A1)
where T is the tensile force of the hag and can be regar-

ded constant along the bag, and d is the distance between
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two points where the bag is attached to the structure.
The upward force acting on the bag can be given as
T (sin y» — sin y) = Fo. (A2)
Wince the surface area of the bag is presumed constant
through the entire period of motion, the variation of a
upward force AF will cause angular deformations Ay
and Ay, at higher and at lower hinge points. Then the
upward force becomes
Fo + AF = T(sin(yz + Aye) — sin(y1 + Ay)).
(A3)
Thus AF becomes

KB RER K P29% 29 19924 5A
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AF=T (sin(ya+ Ays) — sin(yr + Ayr) —sin we+sin y).

(a4)
If we suppose Ay = — Ay = Aw{1, then
AF = T (cos y» + cos y1) Ay (A5)
Substituting (A1) into (A.5), we obtain
AF =dP, — Po) Ay (A6)

Thus the restoring coefficient of a bag due to the angular

deformation can be written as

dF
—— = d(P, — Py). (AT
dy



