Development of Respiratory Training System Using Individual Characteristic Guiding Waveform

환자고유의 호흡 패턴을 적용한 호흡 연습장치 개발 및 유용성 평가

  • Kang, Seong-Hee (Department of Biomedical Engineering, The Catholic University of Korea) ;
  • Yoon, Jai-Woong (Department of Biomedical Engineering, The Catholic University of Korea) ;
  • Kim, Tae-Ho (Department of Biomedical Engineering, The Catholic University of Korea) ;
  • Suh, Tae-Suk (Department of Biomedical Engineering, The Catholic University of Korea)
  • 강성희 (가톨릭대학교 의과대학 의공학교실) ;
  • 윤제웅 (가톨릭대학교 의과대학 의공학교실) ;
  • 김태호 (가톨릭대학교 의과대학 의공학교실) ;
  • 서태석 (가톨릭대학교 의과대학 의공학교실)
  • Received : 2011.12.22
  • Accepted : 2012.02.27
  • Published : 2012.03.31

Abstract

The purpose of this study was to develop the respiratory training system using individual characteristic guiding waveform to reduce the impact of respiratory motion that causes artifact in radiotherapy. In order to evaluate the improvement of respiratory regularity, 5 volunteers were included and their respiratory signals were acquired using the in-house developed belt-type sensor. Respiratory training system needs 10 free breathing cycles of each volunteer to make individual characteristic guiding waveform based on Fourier series and it guides patient's next breathing. For each volunteer, free breathing and guided breathing which uses individual characteristic guiding waveform were performed to acquire the respiratory cycles for 3 min. The root mean square error (RMSE) was computed to analyze improvement of respiratory regularity in period and displacement. It was found that respiratory regularity was improved by using respiratory training system. RMSE of guided breathing decreased up to 40% in displacement and 76% in period compared with free breathing. In conclusion, since the guiding waveform was easy to follow for the volunteers, the respiratory regularity was significantly improved by using in-house developed respiratory training system. So it would be helpful to improve accuracy and efficiency during 4D-RT, 4D-CT.

본 연구에서는 환자 고유의 호흡 패턴을 적용하여 호흡의 규칙성을 향상 시킬 수 있는 호흡 연습장치(respiratory training system)를 개발하여, 호흡에 의한 움직임이 고려된 4D-RT (4-dimension radiation therapy) 또는 4D-CT (4-dimension computed tomography) 수행 시 효율성과 정확성을 높이고자 했다. 개발한 호흡연습장치는 푸리에 급수(Fourier series)를 기반으로 환자 고유의 호흡패턴을 만들어 환자에게 편안한 호흡 유도를 제공한다. 호흡연습장치를 사용했을 때 호흡의 규칙성 향상 정도를 알아보기 위하여 5명의 지원자를 대상으로 실험을 진행하였다. 10개의 자유호흡신호를 획득하여 실험 대상자의 고유한 호흡패턴(guiding waveform)을 만들고, 자유호흡(free breathing)을 3분 동안 시행한 후, 고유한 호흡패턴을 이용하여 호흡을 유도하는 신호모니터-호흡(guide breathing)을 3분 동안 시행하여 데이터를 획득하였다. 획득된 자유호흡과 신호모니터-호흡의 데이터를 이용하여 호흡크기(displacement)와 호흡주기(period)의 변동성을 Root mean square error (RMSE)를 적용하여 정량적으로 비교 분석하였다. 호흡의 변동성을 분석한 결과 신호모니터-호흡은 자유호흡과 비교하여 호흡크기의 경우 최대 40%, 호흡주기의 경우 최대 76%까지 RMSE 값이 감소하였으며, 모든 지원자들의 데이터를 분석한 결과 평균적으로 호흡주기의 경우 RMSE 값이 55% 감소되었고, 호흡크기의 경우 33% 감소하였다. 본 연구에서 개발한 호흡연습장치는 실험대상자의 고유한 호흡패턴을 이용하여 규칙적인 호흡을 유도했기 때문에 피실험자는 큰 노력 없이도 신호모니터-호흡을 따라 할 수 있었다. 따라서 규칙적인 호흡을 오랜 시간 지속시킬 수 있다는 측면에서 장점을 가질 수 있으며, 4D RT, 4D CT를 시행 할 경우 규칙적인 호흡을 통해 효율성과 정확성을 향상 시킬 수 있다.

Keywords

References

  1. Markus S, Kristina K, Karin D, et al: Development and application of a real-time monitoring and feedback system for deep inspiration breath hold based on external marker tracking. Med Phys 33:2868-2877 (2006) https://doi.org/10.1118/1.2219775
  2. Keall PJ, Mageras GS, Balter JM, et al: The management of respiratory motion in radiation oncology report of AAPM TG 76. Med Phys 33:3874-3900 (2006) https://doi.org/10.1118/1.2349696
  3. Shirato H, Shimizu S, Kitamura K, et al: Four-dimensional treatment planning and fluoroscopic real-time tumor tracking radiotherapy for moving tumor. Int J Radiat Oncol Biol Phys 48: 435-442 (2000) https://doi.org/10.1016/S0360-3016(00)00625-8
  4. Ramsey CR, Scaperoth D, Arwood D, et al: Clinical efficacy of respiratory gated conformal radiation therapy. Med Dosim 24:115-119 (1999) https://doi.org/10.1016/S0958-3947(99)00006-0
  5. Hanley J, Debois MM, Mah D, et al: Deep inspiration breath-hold technique for lung tumors: the potential value of target immobilization and reduced lung density in dose escalation. Int J Radiat Oncol Biol Phys 45:603-611 (1999) https://doi.org/10.1016/S0360-3016(99)00154-6
  6. George R, Theodore D, Vedam S, et al: Audio-visual biofeedback for respiratory-gated radiotherapy: Impact of audio instruction and audio-visual biofeedback on respiratory-gated radiotherapy. Int J Radiat Oncol Biol Phys 65:924-933 (2006) https://doi.org/10.1016/j.ijrobp.2006.02.035
  7. Venkat R, Sawant A, Suh Y, et al: Development and preliminary evaluation of a prototype audiovisual biofeedback device incorporating a patient-specific guiding waveform. Phys Med Biol 53:197-208 (2008) https://doi.org/10.1088/0031-9155/53/11/N01
  8. Shin EH, Park HC, Han YI, et al: efficacy of a respiration training system on the regularity of breathing. Korean J of Med Phys 17:136-143 (2006)
  9. Lim S, Park SH, Ahn SD, et al: Guiding curve based on the normal breathing as monitored by thermocouple for regular breathing. Med Phys 34:4514-4518 (2007) https://doi.org/10.1118/1.2795829
  10. Yoshitake T, Nakamura K, Shioyama Y, et al: Breathhold monitoring and visual feedback for radiotherapy using a charge-coupled device camera and a head-mounted display: system development and feasibility. Radiat Med 26:50-55 (2008) https://doi.org/10.1007/s11604-007-0189-4
  11. Neicu T, Berbeco R, Wolfgang J, et al: Synchronized moving aperture radiation therapy (SMART): improvement of breathing pattern reproducibility using respiratory coaching. Phys Med Biol 51:617-638 (2006) https://doi.org/10.1088/0031-9155/51/3/010
  12. Park HJ, Jung WG, Yoon JW, et al: Development of respiratory signal analysis program for accurate phase reassignment in 4D CT reconstruction. Korean J Med Phys 19:241-246 (2008)
  13. Hoisak P, Sixel E, Tirona R, et al: Correlation of lung tumor motion with external surrogate indicators of respiration. Int J Radiat Oncol Biol Phys 60:1298-1306 (2004) https://doi.org/10.1016/j.ijrobp.2004.07.681