• Title/Summary/Keyword: fractional order theory

Search Result 33, Processing Time 0.021 seconds

FRACTIONAL EULER'S INTEGRAL OF FIRST AND SECOND KINDS. APPLICATION TO FRACTIONAL HERMITE'S POLYNOMIALS AND TO PROBABILITY DENSITY OF FRACTIONAL ORDER

  • Jumarie, Guy
    • Journal of applied mathematics & informatics
    • /
    • v.28 no.1_2
    • /
    • pp.257-273
    • /
    • 2010
  • One can construct a theory of probability of fractional order in which the exponential function is replaced by the Mittag-Leffler function. In this framework, it seems of interest to generalize some useful classical mathematical tools, so that they are more suitable in fractional calculus. After a short background on fractional calculus based on modified Riemann Liouville derivative, one summarizes some definitions on probability density of fractional order (for the motive), and then one introduces successively fractional Euler's integrals (first and second kind) and fractional Hermite polynomials. Some properties of the Gaussian density of fractional order are exhibited. The fractional probability so introduced exhibits some relations with quantum probability.

EXISTENCE AND STABILITY RESULTS OF GENERALIZED FRACTIONAL INTEGRODIFFERENTIAL EQUATIONS

  • Kausika, C.;Balachandran, K.;Annapoorani, N.;Kim, J.K.
    • Nonlinear Functional Analysis and Applications
    • /
    • v.26 no.4
    • /
    • pp.793-809
    • /
    • 2021
  • This paper gives sufficient conditions to ensure the existence and stability of solutions for generalized nonlinear fractional integrodifferential equations of order α (1 < α < 2). The main theorem asserts the stability results in a weighted Banach space, employing the Krasnoselskii's fixed point technique and the existence of at least one mild solution satisfying the asymptotic stability condition. Two examples are provided to illustrate the theory.

Fractional-Order Derivatives and Integrals: Introductory Overview and Recent Developments

  • Srivastava, Hari Mohan
    • Kyungpook Mathematical Journal
    • /
    • v.60 no.1
    • /
    • pp.73-116
    • /
    • 2020
  • The subject of fractional calculus (that is, the calculus of integrals and derivatives of any arbitrary real or complex order) has gained considerable popularity and importance during the past over four decades, due mainly to its demonstrated applications in numerous seemingly diverse and widespread fields of mathematical, physical, engineering and statistical sciences. Various operators of fractional-order derivatives as well as fractional-order integrals do indeed provide several potentially useful tools for solving differential and integral equations, and various other problems involving special functions of mathematical physics as well as their extensions and generalizations in one and more variables. The main object of this survey-cum-expository article is to present a brief elementary and introductory overview of the theory of the integral and derivative operators of fractional calculus and their applications especially in developing solutions of certain interesting families of ordinary and partial fractional "differintegral" equations. This general talk will be presented as simply as possible keeping the likelihood of non-specialist audience in mind.

Thermoelastic deformation properties of non-localized and axially moving viscoelastic Zener nanobeams

  • Ahmed E. Abouelregal;Badahi Ould Mohamed;Hamid M. Sedighi
    • Advances in nano research
    • /
    • v.16 no.2
    • /
    • pp.141-154
    • /
    • 2024
  • This study aims to develop explicit models to investigate thermo-mechanical interactions in moving nanobeams. These models aim to capture the small-scale effects that arise in continuous mechanical systems. Assumptions are made based on the Euler-Bernoulli beam concept and the fractional Zener beam-matter model. The viscoelastic material law can be formulated using the fractional Caputo derivative. The non-local Eringen model and the two-phase delayed heat transfer theory are also taken into account. By comparing the numerical results to those obtained using conventional heat transfer models, it becomes evident that non-localization, fractional derivatives and dual-phase delays influence the magnitude of thermally induced physical fields. The results validate the significant role of the damping coefficient in the system's stability, which is further dependent on the values of relaxation stiffness and fractional order.

Effect of heat source and gravity on a fractional order fiber reinforced thermoelastic medium

  • Jain, Kavita;Kalkal, Kapil Kumar;Deswal, Sunita
    • Structural Engineering and Mechanics
    • /
    • v.68 no.2
    • /
    • pp.215-226
    • /
    • 2018
  • In this article, the theory of fractional order two temperature generalized thermoelasticity is employed to study the wave propagation in a fiber reinforced anisotropic thermoelastic half space in the presence of moving internal heat source. The whole space is assumed to be under the influence of gravity. The surface of the half-space is subjected to an inclined load. Laplace and Fourier transform techniques are employed to solve the problem. Expressions for different field variables in the physical domain are derived by the application of numerical inversion technique. Physical fields are presented graphically to study the effects of gravity and heat source. Effects of time, reinforcement, fractional parameter and inclination of load have also been reported. Results of some earlier workers have been deduced from the present analysis.

Variable properties thermopiezoelectric problem under fractional thermoelasticity

  • Ma, Yongbin;Cao, Liuchan;He, Tianhu
    • Smart Structures and Systems
    • /
    • v.21 no.2
    • /
    • pp.163-170
    • /
    • 2018
  • The dynamic response of a finite length thermo-piezoelectric rod with variable material properties is investigated in the context of the fractional order theory of thermoelasticity. The rod is subjected to a moving heat source and fixed at both ends. The governing equations are formulated and then solved by means of Laplace transform together with its numerical inversion. The results of the non-dimensional temperature, displacement and stress in the rod are obtained and illustrated graphically. Meanwhile, the effects of the fractional order parameter, the velocity of heat source and the variable material properties on the variations of the considered variables are presented, and the results show that they significantly influence the variations of the considered variables.

EXISTENCE OF SOLUTION FOR A FRACTIONAL DIFFERENTIAL INCLUSION VIA NONSMOOTH CRITICAL POINT THEORY

  • YANG, BIAN-XIA;SUN, HONG-RUI
    • Korean Journal of Mathematics
    • /
    • v.23 no.4
    • /
    • pp.537-555
    • /
    • 2015
  • This paper is concerned with the existence of solutions to the following fractional differential inclusion $$\{-{\frac{d}{dx}}\(p_0D^{-{\beta}}_x(u^{\prime}(x)))+q_xD^{-{\beta}}_1(u^{\prime}(x))\){\in}{\partial}F_u(x,u),\;x{\in}(0,1),\\u(0)=u(1)=0,$$ where $_0D^{-{\beta}}_x$ and $_xD^{-{\beta}}_1$ are left and right Riemann-Liouville fractional integrals of order ${\beta}{\in}(0,1)$ respectively, 0 < p = 1 - q < 1 and $F:[0,1]{\times}{\mathbb{R}}{\rightarrow}{\mathbb{R}}$ is locally Lipschitz with respect to the second variable. Due to the general assumption on the constants p and q, the problem does not have a variational structure. Despite that, here we study it combining with an iterative technique and nonsmooth critical point theory, we obtain an existence result for the above problem under suitable assumptions. The result extends some corresponding results in the literatures.

A magneto-thermo-viscoelastic problem with fractional order strain under GN-II model

  • Deswal, Sunita;Kalkal, Kapil Kumar;Sheoran, Sandeep Singh
    • Structural Engineering and Mechanics
    • /
    • v.63 no.1
    • /
    • pp.89-102
    • /
    • 2017
  • In this work, we present a theoretical framework to study the thermovisco-elastic responses of homogeneous, isotropic and perfectly conducting medium subjected to inclined load. Based on recently developed generalized thermoelasticity theory with fractional order strain, the two-dimensional governing equations are obtained in the context of generalized magnetothermo-viscoelasticity theory without energy dissipation. The Kelvin-Voigt model of linear viscoelasticity is employed to describe the viscoelastic nature of the material. The resulting formulation of the field equations is solved analytically in the Laplace and Fourier transform domain. On the application of inclined load at the surface of half-space, the analytical expressions for the normal displacement, strain, temperature, normal stress and tangential stress are derived in the joint-transformed domain. To restore the fields in physical domain, an appropriate numerical algorithm is used for the inversion of the Laplace and Fourier transforms. Finally, we have demonstrated the effect of magnetic field, viscosity, mechanical relaxation time, fractional order parameter and time on the physical fields in graphical form for copper material. Some special cases have also been deduced from the present investigation.

UPPER AND LOWER SOLUTION METHOD FOR FRACTIONAL EVOLUTION EQUATIONS WITH ORDER 1 < α < 2

  • Shu, Xiao-Bao;Xu, Fei
    • Journal of the Korean Mathematical Society
    • /
    • v.51 no.6
    • /
    • pp.1123-1139
    • /
    • 2014
  • In this work, we investigate the existence of the extremal solutions for a class of fractional partial differential equations with order 1 < ${\alpha}$ < 2 by upper and lower solution method. Using the theory of Hausdorff measure of noncompactness, a series of results about the solutions to such differential equations is obtained.

EXISTENCE AND CONTROLLABILITY OF FRACTIONAL NEUTRAL INTEGRO-DIFFERENTIAL SYSTEMS WITH STATE-DEPENDENT DELAY IN BANACH SPACES

  • KAILASAVALLI, SUBRAMANIAN;SUGANYA, SELVARAJ;ARJUNAN, MANI MALLIKA
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.20 no.1
    • /
    • pp.51-82
    • /
    • 2016
  • In view of ideas for semigroups, fractional calculus, resolvent operator and Banach contraction principle, this manuscript is generally included with existence and controllability (EaC) results for fractional neutral integro-differential systems (FNIDS) with state-dependent delay (SDD) in Banach spaces. Finally, an examples are also provided to illustrate the theoretical results.