• Title/Summary/Keyword: forest map

Search Result 769, Processing Time 0.03 seconds

Estimation and Mapping of Methane Emissions from Rice Paddies in Korea: Analysis of Regional Differences and Characteristics (전국 논에서 발생하는 메탄 배출량의 산정 및 지도화: 지역 격차 및 특성 분석)

  • Choi, Sung-Won;Kim, Joon;Kang, Minseok;Lee, Seung Hoon;Kang, Namgoo;Shim, Kyo-Moon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.20 no.1
    • /
    • pp.88-100
    • /
    • 2018
  • Methane emissions from rice paddies are the largest source of greenhouse gases in the agricultural sector, but there are significant regional differences depending on the surrounding conditions and cultivation practices. To visualize these differences and to analyze their causes and characteristics, the methane emissions from each administrative district in South Korea were calculated according to the IPCC guidelines using the data from the 2010 Agriculture, Forestry and Fisheries Census, and then the results were mapped by using the ArcGIS. The nationwide average of methane emissions per unit area was $380{\pm}74kg\;CH_4\;ha^{-1}\;yr^{-1}$. The western region showed a trend toward higher values than the eastern region. One of the major causes resulting in such regional differences was the $SF_o$ (scaling factor associated with the application of organic matter), where the number of cultivation days played an important role to either offset or deepen the differences. Comparison of our results against the actual methane emissions data observed by eddy covariance flux measurement in the three KoFlux rice paddy sites in Gimje, Haenam and Cheorwon showed some differences but encouraging results with a difference of 10 % or less depending on the sites and years. Using the updated GWP (global warming potential) value of 28, the national total methane emission in 2010 was estimated to be $8,742,000tons\;CO_2eq$ - 13% lower than that of the National Greenhouse Gas Inventory Report (i.e., $10,048,000tons\;CO_2eq$). The administrative districts-based map of methane emissions developed in this study can help identify the regional differences, and the analysis of their key controlling factors will provide important scientific basis for the practical policy makings for methane mitigation.

A Simple Method Using a Topography Correction Coefficient for Estimating Daily Distribution of Solar Irradiance in Complex Terrain (지형보정계수를 이용한 복잡지형의 일 적산일사량 분포 추정)

  • Yun, Jin-I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.11 no.1
    • /
    • pp.13-18
    • /
    • 2009
  • Accurate solar radiation data are critical to evaluate major physiological responses of plants. For most upland crops and orchard plants growing in complex terrain, however, it is not easy for farmers or agronomists to access solar irradiance data. Here we suggest a simple method using a sun-slope geometry based topographical coefficient to estimate daily solar irradiance on any sloping surfaces from global solar radiation measured at a nearby weather station. An hourly solar irradiance ratio ($W_i$) between sloping and horizontal surface is defined as multiplication of the relative solar intensity($k_i$) and the slope irradiance ratio($r_i$) at an hourly interval. The $k_i$ is the ratio of hourly solar radiation to the 24 hour cumulative radiation on a horizontal surface under clear sky conditions. The $r_i$ is the ratio of clear sky radiation on a given slope to that on a horizontal reference. Daily coefficient for slope correction is simply the sum of $W_i$ on each date. We calculated daily solar irradiance at 8 side slope locations circumventing a cone-shaped parasitic volcano(c.a., 570m diameter for the bottom circle and 90m bottom-to-top height) by multiplying these coefficients to the global solar radiation measured horizontally. Comparison with the measured slope irradiance from April 2007 to March 2008 resulted in the root mean square error(RMSE) of $1.61MJ\;m^{-2}$ for the whole period but the RMSE for April to October(i.e., major cropping season in Korea) was much lower and satisfied the 5% error tolerance for radiation measurement. The RMSE was smallest in October regardless of slope aspect, and the aspect dependent variation of RMSE was greatest in November. Annual variation in RMSE was greatest on north and south facing slopes, followed by southwest, southeast, and northwest slopes in decreasing order. Once the coefficients are prepared, global solar radiation data from nearby stations can be easily converted to the solar irradiance map at landscape scales with the operational reliability in cropping season.

Drainage Analysis for the Anyang-cheon Upper-watershed Management Planning (유역관리계획수립(流域管理計劃樹立)에 관(關)한 기초적(基礎的) 연구(硏究))

  • Woo, Bo Myeong
    • Journal of Korean Society of Forest Science
    • /
    • v.42 no.1
    • /
    • pp.39-54
    • /
    • 1979
  • Such stream characteristics as the numbers, lengths, orders of stream channels, and drainage density are the essential elements for the analysis of drainages in planning of watershed management in a drainage basin. The drainage net is the pattern of tributaries and master streams in a drainage basin as declineated on a planimetric map. Stream order is a measure of the position of a stream in the hierarchy of tributaries. Density of the drainage is given by the quotient of the cumulative length of stream and the total drainage area. Drainage density then is simply a length per unit of area. In this study, the Anyang-cheon upper-watershed is selected for the survey and analysis of the stream system and drainage density in view point of the useful collection of data for effective watershed management planning. The Anyang-cheon upper-watershed is consisted of about 12,600 hectars of drainage area including the 13 Sub-stream. Total length of the Stream (as described in the Stream Law) in the survey area is measured as much as 71.2km, and that of the Small-stream as descrived in the Saemaul Stream Survey Book (1972) is calculated as 43,010 meters. Besides of this lengths, measured about 43,410 meters of the Small-stream and about 71,900 meters of the Torrential valley through this study. The range of the drainage density among the 13 Sub-streams having sub-watershed is analysed as from 14.79 to 24.10, and average value of drainage density in the entire watershed is calculated as 18.21 in case of including the length of the Torrential valley and 12.50 in case of excluding the same. It is required that the standard classification system in classifing for the characteristics of identification among the Stream, Sub-stream, Small-stream, Torrent, and Torrential valley must be satisfied through joint study of the authorities concerned.

  • PDF

The Variation of Natural Population of Pinus densiflora S. et Z. in Korea -Characteristics of Needle and Wood of Wangsan, Bonghwa and Yangju Populations- (소나무 천연집단(天然集團)의 변이(變移)에 관(關)한 연구(硏究)(VII) -왕산(旺山), 봉화(奉化), 양주집단(楊州集團)의 침엽(針葉) 및 재질형질(材質形質)-)

  • Yim, Kyong Bin;Lee, Kyong Jae
    • Journal of Korean Society of Forest Science
    • /
    • v.40 no.1
    • /
    • pp.1-18
    • /
    • 1978
  • Three Pinus densiflora populations as shown in location map (Fig. 1) were studied in 1977. These succeed the population numbers 10, 11 and 12 after the preceeding populations. Following the previous study methods, 20 trees were chosen from each population and the morphological characteristics such as tree forms, branching habit, needle and wood properties were investigated. The results are summerized as follows; 1. The mean stand ages were ranged from 40 to 45. The growth performances of trees of population 10 and 11 was similar, but 12 seemed to be inferior more or less. 2. The ratios of clear bole length was 0.53 in population 12 as the highest but 0.43 for population 10 as the lowest. 3. The population 12 was considered to be a stand of the coarser branching habit having the crown index (The maximum crown diameter/the crown length) 1.65 though the mean branching angle indicates almost horizontal. 4. The differences were observed in the clear bole length ratios and crown-indices between populations as shown in Fig. 3 and 4. 5. No inter-population differences in serration density of needle was shown but significant inter and intra-population and individual differences (within population) in number of stomata rows and resin duct. 6. Population 12 shown 0.119 of resin duct index as the maximum. 7. The pattern of diameter growth, analyses based on the width of 10-year-ring segment unit (for example, the 1st segment denotes the width between pith center and 10th year ring and the 2nd one is from 11th to 20th year ring and so on.), was alike among populations as shown in Fig. 9. 8. No significant differences between population in mean summer wood percentages as well as in wood specific gravity was observed. The values of wood specific gravity were increased with the increase of ages in population 10 and 11 however vice versa in population 12. 9. The fiber length was increased with the increase of age but no differences between populations as shown in Fig. 12.

  • PDF

The PRISM-based Rainfall Mapping at an Enhanced Grid Cell Resolution in Complex Terrain (복잡지형 고해상도 격자망에서의 PRISM 기반 강수추정법)

  • Chung, U-Ran;Yun, Kyung-Dahm;Cho, Kyung-Sook;Yi, Jae-Hyun;Yun, Jin-I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.11 no.2
    • /
    • pp.72-78
    • /
    • 2009
  • The demand for rainfall data in gridded digital formats has increased in recent years due to the close linkage between hydrological models and decision support systems using the geographic information system. One of the most widely used tools for digital rainfall mapping is the PRISM (parameter-elevation regressions on independent slopes model) which uses point data (rain gauge stations), a digital elevation model (DEM), and other spatial datasets to generate repeatable estimates of monthly and annual precipitation. In the PRISM, rain gauge stations are assigned with weights that account for other climatically important factors besides elevation, and aspects and the topographic exposure are simulated by dividing the terrain into topographic facets. The size of facet or grid cell resolution is determined by the density of rain gauge stations and a $5{\times}5km$ grid cell is considered as the lowest limit under the situation in Korea. The PRISM algorithms using a 270m DEM for South Korea were implemented in a script language environment (Python) and relevant weights for each 270m grid cell were derived from the monthly data from 432 official rain gauge stations. Weighted monthly precipitation data from at least 5 nearby stations for each grid cell were regressed to the elevation and the selected linear regression equations with the 270m DEM were used to generate a digital precipitation map of South Korea at 270m resolution. Among 1.25 million grid cells, precipitation estimates at 166 cells, where the measurements were made by the Korea Water Corporation rain gauge network, were extracted and the monthly estimation errors were evaluated. An average of 10% reduction in the root mean square error (RMSE) was found for any months with more than 100mm monthly precipitation compared to the RMSE associated with the original 5km PRISM estimates. This modified PRISM may be used for rainfall mapping in rainy season (May to September) at much higher spatial resolution than the original PRISM without losing the data accuracy.

Preliminary Result of Uncertainty on Variation of Flowering Date of Kiwifruit: Case Study of Kiwifruit Growing Area of Jeonlanam-do (기후변화에 따른 국내 키위 품종 '해금'의 개화시기 변동과 전망에 대한 불확실성: 전남 키위 주산지역을 중심으로)

  • Kim, Kwang-Hyung;Jeong, Yeo Min;Cho, Youn-Sup;Chung, Uran
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.18 no.1
    • /
    • pp.42-54
    • /
    • 2016
  • It is highly anticipated that warming temperature resulting from global climate change will affect the phenological pattern of kiwifruit, which has been commercially grown in Korea since the early 1980s. Here, we present the potential impacts of climate change on the variations of flowering day of a gold kiwifruit cultivar, Haegeum, in the Jeonnam Province, Korea. By running six global climate models (GCM), the results from this study emphasize the uncertainty in climate change scenarios. To predict the flowering day of kiwifruit, we obtained three parameters of the 'Chill-day' model for the simulation of Haegeum: $6.3^{\circ}C$ for the base temperature (Tb), 102.5 for chill requirement (Rc), and 575 for heat requirement (Rh). Two separate validations of the resulting 'Chill-day' model were conducted. First, direct comparisons were made between the observed flowering days collected from 25 kiwifruit orchards for two years (2014-15) and the simulated flowering days from the 'Chill-day' model using weather data from four weather stations near the 25 orchards. The estimation error between the observed and simulated flowering days was 5.2 days. Second, the model was simulated using temperature data extracted, for the 25 orchards, from a high-resolution digital temperature map, resulting in the error of 3.4 days. Using the RCP 4.5 and 8.5 climate change scenarios from six GCMs for the period of 2021-40, the future flowering days were simulated with the 'Chill-day' model. The predicted flowering days of Haegeum in Jeonnam were advanced more than 10 days compared to the present ones from multi-model ensemble, while some individual models resulted in quite different magnitudes of impacts, indicating the multi-model ensemble accounts for uncertainty better than individual climate models. In addition, the current flowering period of Haegeum in Jeonnam Province was predicted to expand northward, reaching over Jeonbuk and Chungnam Provinces. This preliminary result will provide a basis for the local impact assessment of climate change as more phenology models are developed for other fruit trees.

The Variation of Natural Population of Pinus densiflora S. et Z. in Korea (IX) -Needle and Wood Characteristics of Six Populations- (소나무천연집단(天然集團)의 변이(變異)에 관(關)한 연구(硏究)(IX) -광주(廣州), 제천(堤川), 보은(報恩), 무주(茂朱), 구례(求禮), 제주집단(濟州集團)의 침엽(針葉) 및 재질형질(材質形質)-)

  • Yim, Kyong Bin;Lee, Kyong Jae
    • Journal of Korean Society of Forest Science
    • /
    • v.44 no.1
    • /
    • pp.1-25
    • /
    • 1979
  • Six natural populations of Pinus densiflora S. et Z. as shown in the location map (Flg 1) were studied during 1978. The numerial pouplation codes, 13 to 18. The results of populations 1 to 12 were reported in previous papers. Following the study methods described before, 20 trees were sampled from each population and morpological characteristics such as stem forms, branching habit needle and wood properties investigated. The results are summerized as follows; 1. The mean stand ages were ranged from 36 to 97 of years. The growth performances of trees of population 14. 15 and 18 was similar, but 13, 16, and 17 seemed to be inferior more or less. 2. The ratios of clear bole length were 0.70 in population 18 as the highest but 0.28 for population 16 as the lowest. 3. The population 17 was considered to be a stand of the coarser branching habit having the crown index (The maximum crown diameter/the crown height) 158 though the branching angles were almost horizontal. 4. The differences were observed in the clear bole length ratios and crown-indices between population as shown In Fig. 3 and 4. 5. As to the serration density, number of stomata row and resin duct; the significant differences exist between individual trees within population and also between populations. 6. Population 18 shown resin duct index 0.119 as the maximum. 7. The patterns of diameter growth, based on the width of 10-year-ring segment unit(for example, the 1st segment denotes the with between pith center and 10th year ring and the 2nd one is from 11th to 20th ring and so on.), were alike among populations as shown in Fig 9. 8. Significant differences between population in mean summer wood percentage as well as in wood specific gravity was observed. The values of wood specific gravity were increased with the increase of ages in population 14, 18 however vice versa in population 13, 15, and 17. 9. The fiber length was mereased with the increased of age but no differences between populations as shown in Fig. 12.

  • PDF

Plant Hardiness Zone Mapping Based on a Combined Risk Analysis Using Dormancy Depth Index and Low Temperature Extremes - A Case Study with "Campbell Early" Grapevine - (최저기온과 휴면심도 기반의 동해위험도를 활용한 'Campbell Early' 포도의 내동성 지도 제작)

  • Chung, U-Ran;Kim, Soo-Ock;Yun, Jin-I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.10 no.4
    • /
    • pp.121-131
    • /
    • 2008
  • This study was conducted to delineate temporal and spatial patterns of potential risk of cold injury by combining the short-term cold hardiness of Campbell Early grapevine and the IPCC projected climate winter season minimum temperature at a landscape scale. Gridded data sets of daily maximum and minimum temperature with a 270m cell spacing ("High Definition Digital Temperature Map", HD-DTM) were prepared for the current climatological normal year (1971-2000) based on observations at the 56 Korea Meteorological Administration (KMA) stations using a geospatial interpolation scheme for correcting land surface effects (e.g., land use, topography, and elevation). The same procedure was applied to the official temperature projection dataset covering South Korea (under the auspices of the IPCC-SRES A2 and A1B scenarios) for 2071-2100. The dormancy depth model was run with the gridded datasets to estimate the geographical pattern of any changes in the short-term cold hardiness of Campbell Early across South Korea for the current and future normal years (1971-2000 and 2071-2100). We combined this result with the projected mean annual minimum temperature for each period to obtain the potential risk of cold injury. Results showed that both the land areas with the normal cold-hardiness (-150 and below for dormancy depth) and those with the sub-threshold temperature for freezing damage ($-15^{\circ}C$ and below) will decrease in 2071-2100, reducing the freezing risk. Although more land area will encounter less risk in the future, the land area with higher risk (>70%) will expand from 14% at the current normal year to 23 (A1B) ${\sim}5%$ (A2) in the future. Our method can be applied to other deciduous fruit trees for delineating geographical shift of cold-hardiness zone under the projected climate change in the future, thereby providing valuable information for adaptation strategy in fruit industry.

Establishment of Geospatial Schemes Based on Topo-Climatology for Farm-Specific Agrometeorological Information (농장맞춤형 농업기상정보 생산을 위한 소기후 모형 구축)

  • Kim, Dae-Jun;Kim, Soo-Ock;Kim, Jin-Hee;Yun, Eun-Jeong
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.21 no.3
    • /
    • pp.146-157
    • /
    • 2019
  • One of the most distinctive features of the South Korean rural environment is that the variation of weather or climate is large even within a small area due to complex terrains. The Geospatial Schemes based on Topo-Climatology (GSTP) was developed to simulate such variations effectively. In the present study, we reviewed the progress of the geospatial schemes for production of farm-scale agricultural weather data. Efforts have been made to improve the GSTP since 2000s. The schemes were used to provide climate information based on the current normal year and future climate scenarios at a landscape scale. The digital climate maps for the normal year include the maps of the monthly minimum temperature, maximum temperature, precipitation, and solar radiation in the past 30 years at 30 m or 270 m spatial resolution. Based on these digital climate maps, future climate change scenario maps were also produced at the high spatial resolution. These maps have been used for climate change impact assessment at the field scale by reprocessing them and transforming them into various forms. In the 2010s, the GSTP model was used to produce information for farm-specific weather conditions and weather forecast data on a landscape scale. The microclimate models of which the GSTP model consists have been improved to provide detailed weather condition data based on daily weather observation data in recent development. Using such daily data, the Early warning service for agrometeorological hazard has been developed to provide weather forecasts in real-time by processing a digital forecast and mid-term weather forecast data (KMA) at 30 m spatial resolution. Currently, daily minimum temperature, maximum temperature, precipitation, solar radiation quantity, and the duration of sunshine are forecasted as detailed weather conditions and forecast information. Moreover, based on farm-specific past-current-future weather information, growth information for various crops and agrometeorological disaster forecasts have been produced.

Analysis and Management of Potential Development Area Using Factor of Change from Forest to Build-up (산림의 시가지 변화요인을 통한 잠재개발지 분석 및 관리방안)

  • LEE, Ji-Yeon;LIM, No-Ol;LEE, Sung-Joo;CHO, Hyo-Jin;SUNG, Hyun-Chan;JEON, Seong-Woo
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.25 no.2
    • /
    • pp.72-87
    • /
    • 2022
  • For the sustainable development and conservation of the national land, planned development and efficient environmental conservation must be accompanied. To this end, it is possible to induce development and conservation to harmonize by deriving factors affecting development through analysis of previously developed areas and applying appropriate management measures to areas with high development pressure. In this study, the relationship between the area where the land cover changed from forest to urbanization and various social, geographical, and restrictive factors was implemented in a regression formula through logistic regression analysis, and potential development sites were analyzed for Yongin City. The factor that has the greatest impact on the analysis of potential development area is the restrict factors such as Green Belt and protected areas, and the factor with the least impact is the population density. About 148km2(52%) of Yongin-si's forests were analyzed as potential development area. Among the potential development sites, the area with excellent environmental value as a protected area and 1st grade on the Environment Conservation Value Assessment Map was derived as about 13km2. Protected areas with high development potential were riparian buffer zone and special measurement area, and areas with excellent natural scenery and river were preferred as development areas. Protected areas allow certain actions to protect individual property rights. However, there is no clear permit criteria, and the environmental impact of permits is not understood. This is identified as a factor that prevents protected areas from functioning properly. Therefore, it needs to be managed through clear exception permit criteria and environmental impact monitoring.