Preliminary Result of Uncertainty on Variation of Flowering Date of Kiwifruit: Case Study of Kiwifruit Growing Area of Jeonlanam-do

기후변화에 따른 국내 키위 품종 '해금'의 개화시기 변동과 전망에 대한 불확실성: 전남 키위 주산지역을 중심으로

  • Kim, Kwang-Hyung (Climate Change Research Department, APEC Climate Center) ;
  • Jeong, Yeo Min (Climate Change Research Department, APEC Climate Center) ;
  • Cho, Youn-Sup (Fruit Research Institute, Jeollanam-do Agricultural Research & Extension Services) ;
  • Chung, Uran (Climate Change Research Department, APEC Climate Center)
  • Received : 2016.03.09
  • Accepted : 2016.03.26
  • Published : 2016.03.30


It is highly anticipated that warming temperature resulting from global climate change will affect the phenological pattern of kiwifruit, which has been commercially grown in Korea since the early 1980s. Here, we present the potential impacts of climate change on the variations of flowering day of a gold kiwifruit cultivar, Haegeum, in the Jeonnam Province, Korea. By running six global climate models (GCM), the results from this study emphasize the uncertainty in climate change scenarios. To predict the flowering day of kiwifruit, we obtained three parameters of the 'Chill-day' model for the simulation of Haegeum: $6.3^{\circ}C$ for the base temperature (Tb), 102.5 for chill requirement (Rc), and 575 for heat requirement (Rh). Two separate validations of the resulting 'Chill-day' model were conducted. First, direct comparisons were made between the observed flowering days collected from 25 kiwifruit orchards for two years (2014-15) and the simulated flowering days from the 'Chill-day' model using weather data from four weather stations near the 25 orchards. The estimation error between the observed and simulated flowering days was 5.2 days. Second, the model was simulated using temperature data extracted, for the 25 orchards, from a high-resolution digital temperature map, resulting in the error of 3.4 days. Using the RCP 4.5 and 8.5 climate change scenarios from six GCMs for the period of 2021-40, the future flowering days were simulated with the 'Chill-day' model. The predicted flowering days of Haegeum in Jeonnam were advanced more than 10 days compared to the present ones from multi-model ensemble, while some individual models resulted in quite different magnitudes of impacts, indicating the multi-model ensemble accounts for uncertainty better than individual climate models. In addition, the current flowering period of Haegeum in Jeonnam Province was predicted to expand northward, reaching over Jeonbuk and Chungnam Provinces. This preliminary result will provide a basis for the local impact assessment of climate change as more phenology models are developed for other fruit trees.

최근 국내에서 재배면적이 증가하고 있는 골드키위 해금의 개화시기를 예측할 수 있는 휴면시계모형의 모수를 추정하고 해금 주산지에서 미래 기후변화에 의한 개화시기의 변화와 불확실성을 전망하고자 본 연구를 수행하였다. 해금 개화시기 예측을 위한 휴면시계모형의 모수는 $6.3^{\circ}C$(base temperature, $T_b$), 102.5(chill requirement, $R_c$), 575(heat requirement, $R_h$)로 추정되었다. 2가지 방법으로 추정된 모수를 검증하였는데, 4개 표준기상관측소의 3년 동안(2013-2015)의 기상자료로부터 해금의 개화시기를 예측하고 25개 해금 노지 재배농가에서 수집된 2년 동안(2014-2015)의 관측 개화일과 비교한 결과 5.2일의 추정오차를 보였다. 또한 격자형 기후표면에 의해 계산된 격자형 개화시기 표면으로부터 25개 해금 노지 재배농가가 위치한 격자들의 예상 개화시기를 추출하여 비교한 결과, 3.4일의 추정오차를 보였다. 이 모수를 2021-2040년 동안의 6개 GCMs의 미래 기후변화 시나리오와 결합하여 해금의 미래 개화시기를 예측하였다. 전남 키위 주산지역에서 가장 빠른 개화시기는 4월 21일(111일), 가장 늦은 개화시기는 6월 2일(153일)로 나타났다. 6개 개별 GCM 중에서 RCP 4.5의 CanESM2과 GFDL-ESM2G, RCP 8.5의 HadGEM2-AO에서 20년 후 전남 키위 주산지역에서 해금의 개화시기는 현재보다 2-3일 단축될 뿐 현재와 큰 차이가 발생하지 않는 것으로 전망되었다. 그러나 RCP 4.5와 RCP 8.5의 6개 GCMs의 평균 미래 개화시기에서 현재보다 10일 이상 단축되고 현재와 같은 개화시기는 전북 및 충남 해안지역 등 북쪽으로 약 150km 이상까지 확대될 수 있는 것으로 전망되었다. 본 연구의 예비 결과는 국내 육종 과수의 생장발육 및 개화시기 예측 등을 위한 생물계절 연구와 기후변화에 대한 영향평가 개선에 기여할 수 있을 것으로 기대한다.



Grant : 아태기후정보서비스및연구개발

Supported by : (재)APEC기후센터


  1. Belrose Inc., 2013: World Kiwifruit Review. 2013 edition. Pullman, WA Belrose Inc., USA.
  2. Cesaraccio, C., D. Spano, R. L. Snyder, and P. Duce, 2004: Chilling and forcing model to predict bud-burst of crop and forest species. Agricultural and Forest Meteorology 126, 1-13.
  3. Chuine, I., 2000: A unified model for budburst of trees. Journal of Theoretical Biology 207, 337-47.
  4. Chung, U., and J. I. Yun, 2004: Solar irradiance - corrected spatial interpolation of hourly air temperature in complex terrain. Agricultural and Forest Meteorology 126, 129-139. doi: 10.1016/j.agrformet.2004.06.006
  5. Chung, U., H. H. Seo, K. H. Hwang, B. S. Hwang, J. Choi, J. T. Lee, and J. I. Yun, 2006: Minimum temperature mapping over complex terrain by estimating cold air accumulation potential. Agricultural and Forest Meteorology 137, 15-24. doi: 10.1016/j.agrformet.2005.12.011
  6. Han, J. H., S. H. Lee, J. J. Choi, S. B. Jung, and H. I. Jang, 2008: Estimation of dormancy breaking time by development rate model in 'Niitaka' pear (Pyrus pirifolia Nakai). Korean Journal of Agricultural and Forest Meteorology 10, 58-64.
  7. Jung, J. E., U. Chung, J. I. Yung, and D. K. Choi, 2004: The Observed change in interannual variations of January minimum temperature between 1951-1980 and 1971-2000 in South Korea. Korean Journal of Agricultural and Forest Meteorology 6, 235-241.
  8. Jung, J. E, H. C. Seo, U. Chung, and J. I. Yun, 2006: Spring phenology of grapevine cultivar under the changing climate in Korea during 1921-2000. Korean Journal of Agricultural and Forest Meteorology 8, 116-124.
  9. Kim, J. H., 2010: Freeze risk assessment for 'Changhowon Hwangdo' peach trees using a dormancy clock model during winter season. Kyung Hee University, 65pp.
  10. Kim, S. O, J. H. Kim, U. Chung, S. H. Kim, G. H. Park, and J. I. Yun, 2009a: Quantification of temperature effects on flowering date determination in Niitaka Pear. Korean Journal of Agricultural and Forest Meteorology 11, 61-71.
  11. Kim, S. O., U. Chung, S. H. Kim, I. M. Choi, and J. I. Yun, 2009b: The suitable region and site for 'Fuji' apple under the projected climate in South Korea. Korean Journal of Agricultural and Forest Meteorology 11, 162-173.
  12. Kim, S. O., and J. I. Yun, 2011: A quantification method for the cold pool effect on nocturnal temperature in a closed catchment. Korean Journal of Agricultural and Forest Meteorology 13, 176-184. doi: 10.5532/KJAFM.2011.13.4.176
  13. Kwon, E. Y., G. C. Song, and J. I. Yun, 2005: Prediction of dormancy release and bud burst in Korean grapevine cultivars using daily temperature data. Korean Journal of Agricultural and Forest Meteorology 7, 185-191.
  14. Kwon, E., Y., E. Jung, U. Chung, J. I. Yun, and H. S. Park, 2008: Using thermal time to simulate dormancy depth and bud-burst of vineyards in Korea for the twentieth century. Journal of Applied Meteorology and Climatology 47, 1792-1801. doi: 10.1175%2F2007JAMC1777.1
  15. Kwon, Y. S., S. O. Kim, H. H. Seo, K. H. Moon, and J. I. Yun, 2012: Geographical shift in blooming date of kiwifruits in Jeju Island by global warming. Korean Journal of Agricultural and Forest Meteorology 14, 179-188. doi:10.5532/KJAFM.2012.14.4.179.
  16. Martre, P., D. Wallach, S. Asseng, and F. Ewert, 2015: Multimodel ensembles of wheat growth. Many models are better than one. Global Change Biology 21, 911-925.
  17. Murphy, J. M., D. M. Sexton, D. N. Barnett, G. S. Jones, M. J. Webb, M. Collins, and D. A. Stainforth, 2004: Quantification of modelling uncertainties in a large ensemble of climate change simulations. Nature 430, 768-772. doi:10.1038/nature02771.
  18. Nalder, I. A., and R. W. Wein, 1998: Spatial interpolation of climatic normals: test of a new method in the Canadian boreal forest. Agricultural and Forest Meteorology 92, 211-225.
  19. Salinger, M. J., G. J. Kenny, and M. J. Morley-bunker, 1993: Climate and kiwifruit cv. Hayward. 1. Influences on development and growth. New Zealand Journal of Crop and Horticultural Science 21, 235-245.
  20. Semenov, M. A., and P. Stratonovitch, 2010: Use of multi-model ensembles from global climate models for assessment of climate change impacts. Climate Research 41, 1-12.
  21. Seo, H. H. 2003: Site selection criteria for the production of high quality apples based on agriclimatology in Korea. Kyung Hee University, 130pp.
  22. Shin, M. Y., J. I. Yun, and A. S. Suh, 1999: Estimation of daily maximum/minimum temperature distribution over the Korean Peninsula by using spatial statistical technique. Journal of the Korean Society of Remote Sensing 15, 9-20.
  23. Yun, S. K., K. H. Chung, I. K. Yoon, E. Y. Nam, J. H. Han, D. J. Yu, and H. J. Lee, 2012: Developmental rate equations for predicting blooming date of 'Yumyeong' (Prunus persica) peach trees. Korean Journal of Agricultural and Forest Meteorology 14, 189-195. doi:10.5532/KJAFM.2012.14.4.189
  24. Yun, J. I., J. Y. Choi, Y. K. Yoon, and U. Chung, 2000: A spatial interpolation model for daily minimum temperature over mountainous regions. Korean Journal of Agricultural and Forest Meteorology 2, 173-182.
  25. Yun, J. I., J. Y. Choi, and J. H. Ahn, 2001: Seasonal trend of elevation effect on daily air temperature in Korea. Korean Journal of Agricultural and Forest Meteorology 3, 96-104.
  26. Zapata, D., M. Salazar, B. Chaves, M. Keller, and G. Hoogenboom, 2015: Estimation of the base temperature and growth phase duration in terms of thermal time for four grapevine cultivars. International Journal of Biometeorology 59, 1771-1781. doi:10.1007/s00484-015-0985-y.
  27. 김성철, 성기철, 좌재호, 임찬규, 전승종, 김천환, 최인명, 2013: 거인에 맞서는 용기 세계적인 기업과 우리 참다래. 농촌진흥청. 20pp.
  28. 조재필, 2013: 불확실성을 고려한 농업용 저수지의 기후변화 영향 평가. APEC 기후센터, 36pp.

Cited by

  1. First Report of Actinidia virus A and B Infecting Actinidia chinensis in South Korea vol.101, pp.8, 2017,