• Title/Summary/Keyword: Uncertainty

Search Result 6,929, Processing Time 0.036 seconds

Uncertainty quantification and propagation with probability boxes

  • Duran-Vinuesa, L.;Cuervo, D.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.8
    • /
    • pp.2523-2533
    • /
    • 2021
  • In the last decade, the best estimate plus uncertainty methodologies in nuclear technology and nuclear power plant design have become a trending topic in the nuclear field. Since BEPU was allowed for licensing purposes by the most important regulator bodies, different uncertainty assessment methods have become popular, overall non-parametric methods. While non-parametric tolerance regions can be well stated and used in uncertainty quantification for licensing purposes, the propagation of the uncertainty through different codes (multi-scale, multiphysics) in cascade needs a better depiction of uncertainty than the one provided by the tolerance regions or a probability distribution. An alternative method based on the parametric or distributional probability boxes is used to perform uncertainty quantification and propagation regarding statistic uncertainty from one code to another. This method is sample-size independent and allows well-defined tolerance intervals for uncertainty quantification, manageable for uncertainty propagation. This work characterizes the distributional p-boxes behavior on uncertainty quantification and uncertainty propagation through nested random sampling.

A Correlational Study on Uncertainty, Mastery and Appraisal of Uncertainty in Hospitalized Children's Mothers (입원 아동 어머니가 지각하는 불확실성, 극복력 및 불확실성 인지의 관계)

  • Yoo, Kyung-Hee
    • Journal of Korean Academy of Nursing
    • /
    • v.37 no.4
    • /
    • pp.594-602
    • /
    • 2007
  • Purpose: This study was conducted to investigate the correlation among uncertainty, mastery and appraisal of uncertainty in hospitalized children's mothers. Method: Self report questionnaires were used to measure the variables Variables were uncertainty, mastery and appraisal of uncertainty. In data analysis, the SPSSWIN 12.0 program was utilized for descriptive statistics, Pearson's correlation coefficients, and regression analysis. Result: Reliability of the instruments was cronbach's $alpha=.84{\sim}.94$. Mastery negatively correlated with uncertainty(r=-.444, p=.000) and danger appraisal of uncertainty(r=-.514, p=.000). In regression of danger appraisal of uncertainty, uncertainty and mastery were significant predictors explaining 39.9%. Conclusion: Mastery was a significant mediating factor between uncertainty and danger appraisal of uncertainty in hospitalized children's mothers. Therefore, nursing interventions which improve mastery must be developed for hospitalized children's mothers.

Measurement Uncertainty of Vibration Testing Result with Including Uncertainty of Testing Facilities (시험장비의 특성을 고려한 진동시험결과에 대한 측정불확도 추정)

  • Moon, Seok-Jun;Chung, Jung-Hoon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.7
    • /
    • pp.781-786
    • /
    • 2016
  • All measurements are subject to uncertainty and a measurement result is complete only when it is accompanied by a statement of the associated uncertainty. By international agreement, this uncertainty has a probabilistic basis and reflects incomplete knowledge of the quantity value. The "Guide to the Expression of Uncertainty in Measurement", commonly known as the GUM, is the definitive document on this subject. The requirements for estimation of measurement uncertainty apply to all results provided by calibration laboratories and results produced by testing laboratories under the optional circumstances. In this paper, a procedure for estimation of measurement uncertainty from vibration testing is proposed on KS F 2868:2003 as an example. Both Type A and Type B evaluation of uncertainty are considered to calculate the combined standard uncertainty and expanded uncertainty.

Model Classification and Evaluation of Measurement Uncertainty (측정 불확도 모형 분류 및 평가)

  • Choi, Sung-Woon
    • Journal of the Korea Safety Management & Science
    • /
    • v.9 no.1
    • /
    • pp.145-156
    • /
    • 2007
  • This paper is to propose model classification and evaluation of measurement uncertainty. In order to obtain type A and B uncertainty, variety of measurement mathematical models are illustrated by example. The four steps to evaluate expanded uncertainty are indicated as following; First, to get type A standard uncertainty, measurement mathematical models of single, double, multiple, design of experiment and serial autocorrelation are shown. Second, to solve type B standard uncertainty measurement mathematical models of empirical probability distributions and multivariate are presented. Third, type A and B combined uncertainty, considering sensitivity coefficient, linearity and correlation are discussed. Lastly, expanded uncertainty, considering degree of freedom for type A, B uncertainty and coverage factor are presented with uncertainty budget. SPC control chart to control expanded uncertainty is shown.

Quantitative uncertainty analysis for the climate change impact assessment using the uncertainty delta method (기후변화 영향평가에서의 Uncertainty Delta Method를 활용한 정량적 불확실성 분석)

  • Lee, Jae-Kyoung
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.spc
    • /
    • pp.1079-1089
    • /
    • 2018
  • The majority of existing studies for quantifying uncertainties in climate change impact assessments suggest only the uncertainties of each stage, and not the total uncertainty and its propagation in the whole procedure. Therefore, this study has proposed a new method, the Uncertainty Delta Method (UDM), which can quantify uncertainties using the variances of projections (as the UDM is derived from the first-order Taylor series expansion), to allow for a comprehensive quantification of uncertainty at each stage and also to provide the levels of uncertainty propagation, as follows: total uncertainty, the level of uncertainty increase at each stage, and the percentage of uncertainty at each stage. For quantifying uncertainties at each stage as well as the total uncertainty, all the stages - two emission scenarios (ES), three Global Climate Models (GCMs), two downscaling techniques, and two hydrological models - of the climate change assessment for water resources are conducted. The total uncertainty took 5.45, and the ESs had the largest uncertainty (4.45). Additionally, uncertainties are propagated stage by stage because of their gradual increase: 5.45 in total uncertainty consisted of 4.45 in emission scenarios, 0.45 in climate models, 0.27 in downscaling techniques, and 0.28 in hydrological models. These results indicate the projection of future water resources can be very different depending on which emission scenarios are selected. Moreover, using Fractional Uncertainty Method (FUM) by Hawkins and Sutton (2009), the major uncertainty contributor (emission scenario: FUM uncertainty 0.52) matched with the results of UDM. Therefore, the UDM proposed by this study can support comprehension and appropriate analysis of the uncertainty surrounding the climate change impact assessment, and make possible a better understanding of the water resources projection for future climate change.

A Study on Estimation uncertainty of measurement in mechanical characteristic exam for Plastic materials (플라스틱재료의 기계적 특성시험 불확도추정에 대한 고찰)

  • Kim Won-kyung;Kwon Sung-Tae;Kim Jung-Nam
    • Proceedings of the KSR Conference
    • /
    • 2003.10c
    • /
    • pp.301-306
    • /
    • 2003
  • Recently, uncertainty of measurement became a major concern for the people working on the laboratory evaluation and accreditation. 'uncertainty of measurement is a parameter associated with the result of a measurement that characteristics the dispersion of the value that could reasonably be attributed to the measured.' This study analysed how to estimate uncertainty of measurement in mechanical characteristic exam for Plastic material. its uncertainty was estimated according to International Organization for Standardization(ISO), they were named to A type uncertainty, B type uncertainty, combined standard uncertainty, and expanded uncertainty. We obtained that the combined standard uncertainty was 0.96697 MPa and the expanded uncertainty was 2.291MPa.

  • PDF

Impact of Uncertainty on the Anxiety of Hospitalized Pregnant Women Diagnosed with Preterm Labor: Focusing on Mediating Effect of Uncertainty Appraisal and Coping Style (입원한 조기진통 임부의 불확실성이 불안에 미치는 영향: 불확실성 평가와 대처양상의 매개효과를 중심으로)

  • Kim, Eun Mi;Hong, Sehoon
    • Journal of Korean Academy of Nursing
    • /
    • v.48 no.4
    • /
    • pp.485-496
    • /
    • 2018
  • Purpose: This study aimed to test the mediating effect of uncertainty appraisal and coping style in the relation between uncertainty and anxiety in hospitalized pregnant women diagnosed with preterm labor. Methods: The participants were 105 pregnant women diagnosed with preterm labor in hospitals in Korea. Data were collected from July to October 2017. The measurements included the Uncertainty in Illness Scale, Uncertainty Appraisal Scale, Coping Style Scale, and State Anxiety Inventory. Data were analyzed using descriptive statistics, an independent t-test, correlation, and multiple regression following the Baron and Kenny method and Sobel test for mediation. Results: The mean score for anxiety was 2.29 out of 4.00 points and for uncertainty it was 2.46 out of 5.00 points. There were significant correlations among uncertainty, uncertainty danger appraisal, uncertainty opportunity appraisal, problem-focused coping, emotion-focused coping, and anxiety. Uncertainty danger appraisal (${\beta}=.64$, p<.001) had a complete mediating effect in the relation between uncertainty and anxiety (Z=4.54, p<.001). Uncertainty opportunity appraisal (${\beta}=-.45$, p<.001) had a complete mediating effect in the relation between uncertainty and anxiety (Z=3.28, p<.001). Emotion-focused coping (${\beta}=-.23$, p=.021) had a partial mediating effect in the relation between uncertainty and anxiety (Z=2.02, p=.044). Conclusion: Nursing intervention programs focusing on managing uncertainty appraisal and improving emotion-focused coping are highly recommended to decrease anxiety in hospitalized pregnant women diagnosed with preterm labor.

Evaluation of Flow Measurement Uncertainty of Sonic Nozzle (소닉노즐의 유량측정 불확도 평가)

  • Choi, H.M.;Park, K.A.;Choi, Y.M.;Oh, Y.K.;Yoon, B.R.
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.601-606
    • /
    • 2001
  • Measurement uncertainty should be evaluated according to ISO/IEC 17025. In Flow measurement area, uncertainty evaluation scheme was applied to the reference flow meter, sonic nozzle. Uncertainty was calculated by evaluating various uncertainty factors affected in flow measurement. The expanded uncertainty of the sonic nozzle was 0.21 % (confidence level of 95 %). This evaluation example will be useful in flow measurement uncertainty determination of other flow meters.

  • PDF

Quantification of predicted uncertainty for a data-based model

  • Chai, Jangbom;Kim, Taeyun
    • Nuclear Engineering and Technology
    • /
    • v.53 no.3
    • /
    • pp.860-865
    • /
    • 2021
  • A data-based model, such as an AAKR model is widely used for monitoring the drifts of sensors in nuclear power plants. However, since a training dataset and a test dataset for a data-based model cannot be constructed with the data from all the possible states, the model uncertainty cannot be good enough to represent the uncertainty of estimations. In fact, the errors of estimation grow much bigger if the incoming data come from inexperienced states. To overcome this limitation of the model uncertainty, a new measure of uncertainty for a data-based model is developed and the predicted uncertainty is introduced. The predicted uncertainty is defined in every estimation according to the incoming data. In this paper, the AAKR model is used as a data-based model. The predicted uncertainty is similar in magnitude to the model uncertainty when the estimation is made for the incoming data from the experienced states but it goes bigger otherwise. The characteristics of the predicted model uncertainty are studied and the usefulness is demonstrated with the pressure signals measured in the flow-loop system. It is expected that the predicted uncertainty can quite reduce the false alarm by using the variable threshold instead of the fixed threshold.

Application of the uncertainty for insertion loss measurement of silencers (소음기 감음 성능 불확도 산출 방법 연구)

  • Yu, Seung-Guk;Kim, Dae-Hyeon;Kim, Yeong-Chan;Kim, Du-Hun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.1675-1680
    • /
    • 2000
  • Recently the uncertainty has been made rapid progress in various fields of industry but the uncertainty measurement method of acoustical test (i.e. Insertion loss, Absorption ratio, Transmission loss etc,) hasn't been established. In this study, the uncertainty of measurement method for ducted silencers is carried out according to ISO 7235. The standard uncertainty factors are composed of sound pressure level, microphone sensitivity and pistonphone calibration in this measurement. Sound pressure level is type A evaluation of uncertainty, microphone sensitivity and pistonphone calibration are type B evaluation of uncertainty. The combined standard uncertainty is calculated by two type evaluation. The expanded uncertainty is expressed by the combined standard uncertainty multiply k value which is yield the effective degree of freedom.

  • PDF