• Title/Summary/Keyword: forest fire area

Search Result 298, Processing Time 0.033 seconds

The Restoration of Forest Fire Area in Kagawa Prefecture, Japan (일본 가가와현 산불피해지의 복구대책)

  • Chun, Kun-Woo;Lee, Si-Young;Lim, Young-Hyup;Kakihara, Toshiko;Ezaki, Tsugio
    • 한국방재학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.238-241
    • /
    • 2007
  • The forest seemed apparently to die on the forest fire area in Honjima, Kagawa Prefecture, Japan. However, the soil that became growing basic of vegetation hardly suffered damage, and the forest recovery was started by the sprout, etc. in the next year. For restoration of forest fire area, the fascine mulching works and log barrier works using the damaged trees were used for the upper-stream, and chack dam and erosion control dam were set up in the downstream. Also, the forest restoration was tried with the plants and the microorganism that inhabit in Honjima to preserve a peculiar forest ecosystem.

  • PDF

EVALUATION FOR DAMAGED DEGREE OF VEGETATION BY FOREST FIRE USING LIDARAND DIGITALAERIAL PHOTOGRAPH

  • Kwak, Doo-Ahn;Chung, Jin-Won;Lee, Woo-Kyun;Lee, Seung-Ho;Cho, Hyun-Kook;We, Gwang-Jae;Kim, Tae-Min
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.533-536
    • /
    • 2007
  • The LiDAR data structure has the potential for modeling in three dimensions because the LiDAR data can represent voxels with z value under certain defined conditions. Therefore, it is possible to classify the physical damaged degree of vegetation by forest fire as using the LiDAR data because the physical loss of canopy height and width by forest fire can be relative to an amount of points reached to the ground through the canopy of damaged forest. On the other hand, biological damage of vegetation by forest fire can be explained using the NDVI (Normalized Difference Vegetation Index) which show vegetation vitality. In this study, we graded the damaged degree of vegetation by forest fire in Yangyang-Gun of South Korea using the LiDAR data for physical grading and digital aerial photograph including Red, Green, Blue and Near Infra-Red bands for biological grading. The LiDAR data was classified into 2 classes, of which one was Serious Physical Damaged (SPD) and the other was Light Physical Damaged (LPD) area. The NDVI was also classified into 2 classes which are Serious Biological Damaged (SBD) and Light Biological Damaged (LBD) area respectively. With each 2 classes ofthe LiDAR data and NDVI, the damaged area by forest fire was graded into 4 degrees like damaged class 1,2,3 and 4 grade. As a result of this study, 1 graded area was the broadest and next was the 3 grade. With this result, we could know that the burned area by forest fire in Yangyang-Gun was damaged rather biologically because the NDVI in 1 and 3 grade appeared low value whereas the LiDAR data in 1 and 3 grade included light physical damage like the LPD.

  • PDF

Comparative Analysis of Forest Fire Danger Rating on Forest Characteristics of Thinning Area and Non-thinning Area on Forest Fire Burnt Area (산불적지에서 숲 가꾸기 실행 유무와 산불위험성 비교 분석)

  • Lee, Si-Young;Lee, Myung-Woog;Yeom, Chan-Ho;Kwon, Chun-Geun;Lee, Hae-Pyeong
    • Fire Science and Engineering
    • /
    • v.23 no.4
    • /
    • pp.32-39
    • /
    • 2009
  • In this study, 18 plots were selected for particular investigation on Gangneung area and Samcheok area and Uljin area, where forest fire was occurred after thinning in 2007. After selection, a relationship between a damage of forest fire and thinning were compared and analyzed. Many factor such as a damaged species, a thinning or non-thinning, a direction of forest fire head, DBH, a height of tree, a mortality of tree, a leeward scorching ratio, a crown damage ratio, a forest tree standing crop density, a crown base height, a leaving of thinning slash, a location of plot (GPS), elevation, an aspect of slope, an angle of slope, and a topography were measured. Therefore, we analyzed a relationship with forest fire. In the result of this analysis, it was founded that the leeward scorching ratio was 24.7% on thinning area whereas 60.2% on non-thinning area. Subsequently, leeward scorching ratio on thinning area was increased by about 35.5% more than on non-thinning area. In the result of analysis about tree species, a forest of pine tree was more damaged than forest of oak tree. The mortality of tree was increased by about 41.4% on non-thinning area. When stands were close to thinning slashes, these were more damaged by 10${\sim}$20% than other stands for increasing of amount of a combustion material. Especially, as potential of re-ignition increased for more cumulated thinning slash, it will be more important to require a method for a periodical removing or practical utilization of slash.

Analysis of Forest Fire Occurrence in Korea (한국의 산불발생 실태분석)

  • Lee, Si-Young;Lee, Hae-Pyeong
    • Fire Science and Engineering
    • /
    • v.20 no.2 s.62
    • /
    • pp.54-63
    • /
    • 2006
  • The number of forest fire under various conditions such as year, month, time, day of the week, region, damaged species, cause, and damaged area are checked, and the statistics of the forest fire causing materials in recent 14 years ('91-'04) are analyzed. The result shows that the year majority of forest fires had happened in last 14 year was 2001 and most of forest fire occurred in April, Sunday, around 14:00 to 15:00. The most damaged region is Gyeongsangbuk-Do, followed by Gangwon-Do, Jeollabuk-Do, and Gyeonggi-Do. The most damaged species is pine tree. The main causes of forest fires are accidental fire and incineration of a field boundary; however, recently, incendiarism is increased. The result of analysis on the damaged area shows that small fires under 5 ha occurred most frequently and large fires (over 30 ha) occurred mostly in Kangwon province (44.2%). The result also shows that the large forest fires (1,113 minutes) require 7.5 time more than the small forest fires (148 minutes). Especially, since average damaged area caused by large forest fire was about 470 ha per incident.

Forest Stand and Site Characteristics in Post Forest Fire Area and Management Treatments for Optimal Vegetation Restoration (산화지의 입지와 임분특성 및 경영시업에 따른 식생변화 추이분석)

  • Lee, Kwang-Soo;Kim, Suk-Kwon;Bae, Sang-Won;Lee, Kyung-Jae;Kang, Young-Jae;Jung, Su-Young;Moon, Hyun-Shik
    • Journal of agriculture & life science
    • /
    • v.43 no.6
    • /
    • pp.19-27
    • /
    • 2009
  • This study was carried out to obtain the basic model to estimate damage degree from the correlation analysis between forest fire and site environment factors and to clarify the restoration trends thorough multi-temporal survey by observing species diversity followed by various treatments at damaged forest area over time. From the derived model, the damage degree of forest fire was higher in the area of dense coniferous stands composed of simple story at the elevation of about 100m and 200m, and on steeper slope area over 30 degree. As results of this study, fire damaged trees are needed to cut down and a mixed stand with deciduous and coniferous species from the same area is desirable for the future species composition on fire damaged forest. Thus, site characteristics, local species, and mixed stands are the main consideration to enhance the vegetation recovery.

Long-Term Change of the Amount of Soil Erosion in Forest Fire (산불 피해지 토양침식량의 장기적인 변화에 관한 연구)

  • Ma, Ho-Seop;Jeong, Won-Ok
    • Journal of Korean Society of Forest Science
    • /
    • v.97 no.4
    • /
    • pp.363-367
    • /
    • 2008
  • The purpose of this study was to evaluate the change of the amount of soil erosion by comparisons between burned and unburned area after forest fire. The amount of soil erosion in burned area was more high 11.2 times in year of fire, 8.4 times in 1 later year, 2 times in 5 later year and 1.3 times in 10 later year than in unburned area. The ratio of soil erosion in burned area was reduced to 98% of 10 later year as compared to the year of fire. Therefore, the soil erosion in the burned area almost tended to stabilization like unburned area passing ten year after forest fire. The most affecting factors on the amount of soil erosion in burned and unburned area were unit rainfall, number of unit rainfall and number of rainfall accumulated.

The Study of Burned-Area Analysis Method for Forest-fire Damaged Area - Investigation for ImSil County, GyeongJu City - (산불피해 현장답사를 통한 연소면적 산출 연구 - 임실, 경주 산불을 중심으로 -)

  • Kang, Seo-Young;Lee, Jung-Yun;Kim, Hong
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.3
    • /
    • pp.176-181
    • /
    • 2012
  • In this research the 2009 spring occurred during forest fire ImSil and research destination GyeongJu has been selected. Research in the field of the target time exploratory Boundary Data through after air photos, satellite photos and topographic map by using the combustion area was calculated. 2009 March 1-forest fire occurs on the day of the weather information and weather changes wildfire in the check in any affected. Study research destination of combustion is ImSil 161 ha, GyeongJu 270.93 ha. The impact of the weather-temperature dry weather forest fires this favorable situation to occur and the wind directions and the spread of the mountain wind speed was less impact has no arguments.

Forest Fire Damage Analysis Using Satellite Images (위성영상을 이용한 산불재해 분석)

  • Kang, Joon-Mook;Zhang, Chuan;Park, Joon-Kyu;Kim, Min-Gyu
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.28 no.1
    • /
    • pp.21-28
    • /
    • 2010
  • Forest fire is one of the main factor disturbing the environment of forest, and it influences greatly the structure and function on forest. The process of vegetation recovery could be decided according to the extent of the damage. It is required a lot of man powers and budgets to understand born severity and process of vegetation rehabilitation at the damaged area after large-fire. However, the analysis of born severity in the forest area using satellite imagery can acquire rapidly information and more objective results remotely in the large-fire area. In this study, the space sensors have been used to map area burned, assess characteristics of active fires. For classifying fire damaged area and analyzing severity of Cheongyang-Yesan fire in 2002, in this paper we use pre- and post-fire imagery from the Landsat TM and ETM+ to compute the evaluate large-scale patterns of burn severity, use the digital stock map to calculate the damaged condition about the forest fires damaged regions and use the NDVI to monitoring the situation of the revegetation.

An Quantitative Analysis of Severity Classification and Burn Severity for the Large Forest Fire Areas using Normalized Burn Ratio of Landsat Imagery (Landsat 영상으로부터 정규탄화지수 추출과 산불피해지역 및 피해강도의 정량적 분석)

  • Won, Myoung-Soo;Koo, Kyo-Sang;Lee, Myung-Bo
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.10 no.3
    • /
    • pp.80-92
    • /
    • 2007
  • Forest fire is the dominant large-scale disturbance mechanism in the Korean temperate forest, and it strongly influences forest structure and function. Moreover burn severity incorporates both short- and long-term post-fire effects on the local and regional environment. Burn severity is defined by the degree to which an ecosystem has changed owing to the fire. Vegetation rehabilitation may specifically vary according to burn severity after fire. To understand burn severity and process of vegetation rehabilitation at the damaged area after large-fire is required a lot of man powers and budgets. However the analysis of burn severity in the forest area using satellite imagery can acquire rapidly information and more objective results remotely in the large-fire area. Space and airbone sensors have been used to map area burned, assess characteristics of active fires, and characterize post-fire ecological effects. For classifying fire damaged area and analyzing burn severity of Samcheok fire area occurred in 2000, Cheongyang fire in 2002, and Yangyang fire in 2005 we utilized Normalized Burn Ratio(NBR) technique. The NBR is temporally differenced between pre- and post-fire datasets to determine the extent and degree of change detected from burning. In this paper we use pre- and post-fire imagery from the Landsat TM and ETM+ imagery to compute the NBR and evaluate large-scale patterns of burn severity at 30m spatial resolution. 65% in the Samcheok fire area, 91% in the Cheongyang fire area and 65% in the Yangyang fire area were corresponded to burn severity class above 'High'. Therefore the use of a remotely sensed Differenced Normalized Burn Ratio(${\Delta}NBR$) by RS and GIS allows for the burn severity to be quantified spatially by mapping damaged domain and burn severity across large-fire area.

  • PDF

Study of Indirect Attack Method of Aerial Fire Firefighting by Helicopter on Forest Fire (헬기에 의한 산불공중간접진화 방법에 관한 연구)

  • Bae, Taek-Hoon;Choi, Youn-Chul
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.24 no.3
    • /
    • pp.55-61
    • /
    • 2016
  • Among the method of aerial fire firefighting, the indirect attack is efficiency way to protect main facilities and it is the aerial fire line construction. According to this study is suggested the fire line construction strategy of indirect attack by helicopter suitable Korea forest fire on theory consideration of indirect attack and experience in practical scene. This study defined that main key points of the fire line construction are accuracy, large quantity, and quickness. Main protection facilities are devided as caution area, warning area, danger area and concern area. Also, it suggested stage-by-stsge from 1 step to 3 step for the aerial fire firefighting correspondence strategy and the fire line construction model. I regard that this study's indirect attack method of the aerial fire firefighting of the fire line construction may be understand about indirect attack tactics and application of indirect attack which is assistance to raise of capability of the aerial fire firefighting with effectiveness and efficiency.