• 제목/요약/키워드: force standard

검색결과 868건 처리시간 0.033초

파인 세라믹스의 초음파 진동절삭에 관한 연구 (A study on the ultrasonic vibration cutting properties of fine ceramics)

  • 강종표;송지복
    • 한국정밀공학회지
    • /
    • 제10권1호
    • /
    • pp.126-133
    • /
    • 1993
  • Conventional cutting(CC) and Ultrasonic Vibration Cutting(UVC) of 20[KHz] are practised with standard lathe for fine ceramics(A1$_{2}$O$_{3}$. UVC is suggested to good cutting method for difficult-to-machine-materials and it is known to excellent cutting method to super precision cutting and elevation of productibility for general, nonferrous matals. In this research, main results to be obtained are as follows: 1. From the CC and UVC results by general lathe with sintering diamond tool, the surface roughness and roundness are improved in UVC. Also tool life is longer in UVC than CC. From the observation of machined surface, it is found that brittle fracutural material remove occured in fine ceramics cutting. 2. It is verified that the thrust force is the biggest in fine ceramics cutting, principal force is the next, and feed rate force the third and it is appear a little, on the other hand the principal force is the biggest in metal cutting, feed rate frece is the second, and thrust force is the next.

  • PDF

A New Method for Coronal Force-Free Field Computation That Exactly Implements the Boundary Normal Current Density Condition

  • 이시백;전홍달;이중기;최광선
    • 천문학회보
    • /
    • 제44권2호
    • /
    • pp.71.3-71.3
    • /
    • 2019
  • Previously we developed a method of coronal force-free field construction using vector potentials. In this method, the boundary normal component of the vector potential should be adjusted at every iteration step to implement the boundary normal current density, which is provided by observations. The method was a variational method in the sense that the excessive kinetic energy is removed from the system at every iteration step. The boundary condition imposing the normal current density, however, is not compatible with the variational procedure seeking for the minimum energy state, which is employed by most force-free field solvers currently being used. To resolve this problem, we have developed a totally new method of force-free field construction. Our new method uses a unique magnetic field description using two scalar functions. Our procedure is non-variational and can impose the boundary normal current density exactly. We have tested the new force-free solver for standard Low & Lou fields and Titov-Demoulin flux ropes. Our code excels others in both examples, especially in Titov-Demoulin flux ropes, for which most codes available now yield poor results. Application to a real active region will also be presented.

  • PDF

동적 접촉력 측정을 통한 차세대 고속열차의 집전성능 분석 (Analysis of the Current Collection Quality for Next Generation High-Speed Trains with Measurements of the Dynamic Contact Force)

  • 오혁근;지형민;김영국;김석원
    • 한국철도학회논문집
    • /
    • 제17권3호
    • /
    • pp.157-164
    • /
    • 2014
  • 판토그래프와 전차선간의 접촉력 특성은 차량에 대한 안정적 전원공급 특성인 집전성능을 평가하는 중요한 지표이다.본 연구에서는 HEMU-430x판토그래프의 동적 접촉력 특성을 속도에 따라 분석하였다. 그 결과 판토그래프의 접촉력 표준편차가 속도에 따라 증가함을 확인하였고, 주파수 분석을 통하여 전차선의 경간이 접촉력에 매우 큰 영향을 미치는 인자임을 확인하였다. 또한 400km/h 이상의 속도에서 안정적인 집전특성을 확보하려면 판토그래프와 가선간의 접촉력 표준편차가 작아져야 한다. 이를 위하여 전차선 장력증가, 판토그래프 집전판 경량화 등의 방안을 적용하였으며, 이에 대한 접촉력 측면에서의 효과를 정량적으로 분석하였다. 또한 개활지와 터널에서의 접촉력 특성의 차이에 대하여서도 주파수 분석을 통해서 분석하였다.

Sensory Evaluation of Friction and Viscosity Rendering with a Wearable 4 Degrees of Freedom Force Feedback Device Composed of Pneumatic Artificial Muscles and Magnetorheological Fluid Clutches

  • Okui, Manabu;Tanaka, Toshinari;Onozuka, Yuki;Nakamura, Taro
    • 드라이브 ㆍ 컨트롤
    • /
    • 제18권4호
    • /
    • pp.77-83
    • /
    • 2021
  • With the progress in virtual reality technology, various virtual objects can be displayed using head-mounted displays (HMD). However, force feedback sensations such as pushing against a virtual object are not possible with an HMD only. Focusing on force feedback, desktop-type devices are generally used, but the user cannot move in a virtual space because such devices are fixed on a desk. With a wearable force feedback device, users can move around while experiencing force feedback. Therefore, the authors have developed a wearable force feedback device using a magnetorheological fluid clutch and pneumatic rubber artificial muscle, aiming at presenting the elasticity, friction, and viscosity of an object. To date, we have developed a wearable four-degree-of-freedom (4-DOF) force feedback device and have quantitatively evaluated that it can present commanded elastic, frictional, and viscous forces to the end effector. However, sensory evaluation with a human has not been performed. In this paper, therefore, we conduct a sensory evaluation of the proposed method. In the experiment, frictional and viscous forces are rendered in a virtual space using a 4-DOF force feedback device. Subjects are asked to answer questions on a 1- to 7-point scale, from 1 (not at all) to 4 (neither) to 7 (strongly). The Wilcoxon signed rank test was used for all data, and answer 4 (neither) was used as compared standard data. The experimental results confirmed that the user could feel the presence or absence of viscous and frictional forces. However, the magnitude of those forces was not sensed correctly.

수준별 힘 안정성에 대한 EMG 변인 및 근육 특성의 관여 (Involvement of EMG Variables and Muscle Characteristics in Force Steadiness by Level)

  • 조현덕;김맹규
    • 대한의용생체공학회:의공학회지
    • /
    • 제44권5호
    • /
    • pp.336-345
    • /
    • 2023
  • The present study was designed to evaluate changes in neuromuscular properties and the structural and qualitative characteristics of muscles during submaximal isometric contractions at low-to-relatively vigorous target forces and to determine their influence on force steadiness (FS). Thirteen young adult males performed submaximal isometric knee extensions at 10, 20, 50, and 70% of their maximal voluntary isometric contraction using their non-dominant legs. During submaximal contractions, we recorded force, EMG signals from vastus medialis (VM), vastus lateralis (VL), and rectus femoris (RF), and ultrasound images from the distal RF (dRF). Force and EMG standard deviation (SD) and coefficient of variation (CV) values were used to measure FS and EMG steadiness, respectively. Muscle thickness (MT), pennation angle (PA), echo intensity (EI), and texture features were calculated from ultrasound images to assess the structural and qualitative characteristics of the muscle. FS, neuromuscular properties, and texture features showed significant differences across different force levels. Additionally, there were significant differences in EMG_CV among the quadriceps at the 50% and 70% force levels. The results of correlation analysis revealed that FS had a significant relationship with EMG_CV in VM, VL, and RF, as well as with the texture features of dRF. This study's findings demonstrate that EMG steadiness and texture features are influenced by the magnitude of the target force and are closely related to FS, indicating their potential contribution to force output control.

국제물품매매계약(國際物品賣買契約)의 주요 조항(條項)에 관한 연구(硏究) (A Study on the Important Clause of International Sales Contract)

  • 박남규
    • 무역상무연구
    • /
    • 제18권
    • /
    • pp.27-62
    • /
    • 2002
  • The international sale contract is the central contracts in export-import transactions. A good sale contract or set of general conditions of sale will cover all the principal elements of the transaction, so that uncertainties are avoided. The parties' respective duties as concern the payment mechanism, transport contract and insurance responsibilities, inter alia, will all be clearly detailed in the contract. The following key clauses should be included in international contracts of sale and general conditions of sale: ${\bullet}$ preamble ${\bullet}$ identification of parties ${\bullet}$ description of goods ${\bullet}$ price and payment conditions ${\bullet}$ delivery periods and conditions ${\bullet}$ inspection of the goods - obligations and limitations ${\bullet}$ quantity or quality variations in the products delivered ${\bullet}$ reservation of title and passing of property rights ${\bullet}$ transfer of risk - how accomplished ${\bullet}$ seller's warranties and buyer's complaints ${\bullet}$ assignment of rights ${\bullet}$ force majeure clause and hardship clause ${\bullet}$ requirement that amendments and modifications be in writing ${\bullet}$ choice of law ${\bullet}$ choice of dispute resolution mechanism Under most systems of law, a party can be excused from a failure to perform a contract obligation which is caused by the intervention of a totally unforeseeable event, such as the outbreak of war, or an act of God such as an earthquake or hurricane. Under the American commercial code (UCC) the standard for this relief is one of commercial impracticability. In contrast, many civil law jurisdictions apply the term force majeure to this problem. Under CISG, the standard is based on the concept of impediments to performance. Because of the differences between these standards, parties might be well advised to draft their own force majeure, hardship, or excusable delays clause. The ICC publication, "Force Majeure and Hardship" provides a sample force majeure clause which can be incorporated by reference, as well as a hardship clause which must be expressly integrated in the contract. In addition, the ICC Model provides a similar, somewhat more concise formulation of a force majeure clause. When the seller wishes to devise his own excusable delays clause, he will seek to anticipate in its provision such potential difficulties as those related to obtaining government authorisations, changes in customs duties or regulations, drastic fluctuations in labour, materials, energy, or transportation prices, etc.

  • PDF

이력모델에 따른 표준학교건물의 비탄성거동 연구 (Inelastic Behavior of Standard School Building according to Hysteresis Models)

  • 제정현;김진상;윤태호
    • 한국산학기술학회논문지
    • /
    • 제10권4호
    • /
    • pp.838-845
    • /
    • 2009
  • 본 논문은 내진성능평가를 위해 사용되는 비탄성해석의 신뢰도와 정확도에 있어 결정적인 영향을 미치는 다양한 이력모델의 특성과 구조물의 내진거동에 미치는 영향을 분석하고자 한다. 연구대상은 표준학교건물로서 외국의 지진 가속도와 우리나라 규준에 맞는 인공지진 가속도 3가지를 건물의 장 단변방향 평면골조에 가한 후, 다양한 이력 모델을 적용하여 2차원 시간이력해석을 수행하고 비탄성응답을 구하고 층전단력, 층간변위비, 층변위를 비교하고 힌지의 발생 상태를 분석해 이력모델이 건물의 비탄성거동에 미치는 영향을 분석하였다. 그 결과, 단변방향에서는 층전 단력과 층간변위비 모두 최대값은 수정다케다모델에서, 최소값은 외국지진에 대해서는 클라프모델, 국내지진에 대해서는 강성저감 삼선형모델과 수정다케다모델에서 각각 발생하는 것으로 평가되었다. 하지만, 장변방향에서 외국지진은 강성저감 삼선형모델이, 국내지진은 수정다케다모델이 최대 층전단력을 보였고 층간변위비는 최대값은 수정다케다 모델에서, 최소값은 외국지진의 경우 클라프모델에서, 국내지진의 경우 다케다모델에서 나타났다. 장변방향에서 외국지진은 층전단력와 층간변위가 클라프모델에서 안전율을 낮게 보는 반면 국내지진에서는 수정다케다모델이 안전율을 낮게 평가하는 상이한 결과가 발생했다.

Functional Integration of Serial Dilution and Capillary Electrophoresis on a PDMS Microchip

  • Chang, Jun-Keun;Heo, Yun-Seok;Hyunwoo Bang;Keunchang Cho;Seok Chung;Chanil Chung;Han, Dong-Chul
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제8권4호
    • /
    • pp.233-239
    • /
    • 2003
  • For the quantitative analysis of an unknown sample a calibration curve should be obtained, as analytical instruments give relative, rather than absolute measurements. Therefore, researchers should make standard samples with various known concentrations, measure each standard and the unknown sample, and then determine the concentration of the unknown by comparing the measured value to those of the standards. These procedures are tedious and time-consuming. Therefore, we developed a polymer based microfluidic device from polydimethylsiloxane, which integrates serial dilution and capillary electrophoresis functions in a single device. The integrated microchip can provide a one-step analytical tool, and thus replace the complex experimental procedures. Two plastic syringes, one containing a buffer solution and the other a standard solution, were connected to two inlet holes on a microchip, and pushed by a hydrodynamic force. The standard sample is serially diluted to various concentrations through the microfluidic networks. The diluted samples are sequentially introduced through microchannels by electro-osmotic force, and their laser-induced fluorescence signals measured by capillary electrophoresis. We demonstrate the integrated microchip performance by measuring the fluorescence signals of fluorescein at various concentrations. The calibration curve obtained from the electropherograms showed the expected linearity.

표준전지 및 표준전지 항온함 제작에 관한 연구 (A Study on the Standard Cell and Its Enclosure)

  • 황의진;이화심;이진욱;강홍열
    • 대한화학회지
    • /
    • 제36권6호
    • /
    • pp.857-863
    • /
    • 1992
  • 기전력의 단위인 volt를 유지하기 위하여 사용되는 Weston 산성 포화전지를 만들어, 온도가 일정하도록 특별히 고안하여 제작한 enclosure에 넣어 성능을 평가하였다. 전지 제조에 사용되는 황산카드뮴은 진공 상태에서 재결정하였으며, 수은이 분산된 황산수은(I) 침전은 전기분해에 의해 제조하였으며, 카드뮴 아말감도 전기분해에 의하여 정확한 조성으로 제조할 수 있었다. 표준전지 항온함은 순환식 항온조를 이용하여 제작하였으며, 실내 온도가 심하게 변하는 경우에도 ${\pm}$5 mK 이내로 표준전지의 온도를 안정시킬 수 있었다. 표준전지의 기전력을 5${\sim} 30^{\circ}C$의 온도 범위에서 측정하였으며 전지간의 기전력 표준편차는 약 1ppm이었다.

  • PDF

Development of a Breath Control Training System for Breath-Hold Techniques and Respiratory-Gated Radiation Therapy

  • Hyung Jin Choun;Jung-in Kim;Jong Min Park;Jaeman Son
    • 한국의학물리학회지:의학물리
    • /
    • 제33권4호
    • /
    • pp.136-141
    • /
    • 2022
  • Purpose: This study aimed to develop a breath control training system for breath-hold technique and respiratory-gated radiation therapy wherein the patients can learn breath-hold techniques in their convenient environment. Methods: The breath control training system comprises a sensor device and software. The sensor device uses a loadcell sensor and an adjustable strap around the chest to acquire respiratory signals. The device connects via Bluetooth to a computer where the software is installed. The software visualizes the respiratory signal in near real-time with a graph. The developed system can signal patients through visual (software), auditory (buzzer), and tactile (vibrator) stimulation when breath-holding starts. A motion phantom was used to test the basic functions of the developed breath control training system. The relative standard deviation of the maxima of the emulated free breathing data was calculated. Moreover, a relative standard deviation of a breath-holding region was calculated for the simulated breath-holding data. Results: The average force of the maxima was 487.71 N, and the relative standard deviation was 4.8%, while the average force of the breath hold region was 398.5 N, and the relative standard deviation was 1.8%. The data acquired through the sensor was consistent with the motion created by the motion phantom. Conclusions: We have developed a breath control training system comprising a sensor device and software that allow patients to learn breath-hold techniques in their convenient environment.