Functional Integration of Serial Dilution and Capillary Electrophoresis on a PDMS Microchip

  • Chang, Jun-Keun (School of Electrical Eng. & Computer Science, Seoul National University, Digital Bio Technology, Co., Institute of Advanced Machinery and Design, Seoul National University) ;
  • Heo, Yun-Seok (School of Mechanical and Aerospace Engineering, Seoul National University) ;
  • Hyunwoo Bang (School of Mechanical and Aerospace Engineering, Seoul National University) ;
  • Keunchang Cho (Digital Bio Technology, Co., Institute of Advanced Machinery and Design, Seoul National University) ;
  • Seok Chung (Digital Bio Technology, Co., Institute of Advanced Machinery and Design, Seoul National University) ;
  • Chanil Chung (Digital Bio Technology, Co., Institute of Advanced Machinery and Design, Seoul National University) ;
  • Han, Dong-Chul (School of Mechanical and Aerospace Engineering, Seoul National University)
  • Published : 2003.07.01

Abstract

For the quantitative analysis of an unknown sample a calibration curve should be obtained, as analytical instruments give relative, rather than absolute measurements. Therefore, researchers should make standard samples with various known concentrations, measure each standard and the unknown sample, and then determine the concentration of the unknown by comparing the measured value to those of the standards. These procedures are tedious and time-consuming. Therefore, we developed a polymer based microfluidic device from polydimethylsiloxane, which integrates serial dilution and capillary electrophoresis functions in a single device. The integrated microchip can provide a one-step analytical tool, and thus replace the complex experimental procedures. Two plastic syringes, one containing a buffer solution and the other a standard solution, were connected to two inlet holes on a microchip, and pushed by a hydrodynamic force. The standard sample is serially diluted to various concentrations through the microfluidic networks. The diluted samples are sequentially introduced through microchannels by electro-osmotic force, and their laser-induced fluorescence signals measured by capillary electrophoresis. We demonstrate the integrated microchip performance by measuring the fluorescence signals of fluorescein at various concentrations. The calibration curve obtained from the electropherograms showed the expected linearity.

Keywords

References

  1. Anal.Chem v.64 Capillary electrophoresis and sample in-jection systems intergrated on a planar glass chip Harrison,D.J;A.Manz;Z.Fan;H.Ludi;H.M.Widmer https://doi.org/10.1021/ac00041a030
  2. Anal.Chem v.65 Planar glass chips for capilary electrophoresis:Repetitive sample injection,quantitation,and separation efficiency Seiler,K;D.J.Harrison;A.Manz https://doi.org/10.1021/ac00058a029
  3. Anal.Chem v.66 High-speed separations on a microchip Jacobson,S.C;R.Hergenroder;L.B.Koutny;J.M.Ramsey https://doi.org/10.1021/ac00079a029
  4. Anal.Chem v.66 Electroosmotic pumping and valveless control of fluid flow within a manifold of capillaries on a glass chip Seiler,K;Z.H.Fan;K.Fluri;D.J.Harrison https://doi.org/10.1021/ac00092a029
  5. Anal.Chem v.69 Electronikinetic focusing in microfabricated channel structures Jacobson,S.C;J.M.Ramsey https://doi.org/10.1021/ac961093z
  6. Science v.26 Micromaching a miniatur-ized capillary electrophoresis-based chemical analysis sys-tem on a chip Harrasion,D.F;k.Fluri;K.Seiler;Z.Fan;C.S.Effen-hauser;A.Manz
  7. Anal.Chem v.66 Effects of injection schemes and column geometry on the performance of mi-crochip electrophoresis devices Jacobsom,S.C;R.Hergenroder;L.B.Koutny;R.J.War-mack;J.M.Ramsey https://doi.org/10.1021/ac00079a028
  8. Anal.Chem v.71 Radical capillary array electrophoresis microplate and scanner for high-performance nucleic acid analysis Shi,Y;Simpson,P.C;R.A.Mathies https://doi.org/10.1021/ac990518p
  9. Electro-phoresis v.21 High speed single nucleotide polymor-phism typing of a hereditary haemeochromatosis mutation with capilary array electrophoresis microplates Medintz,I;W.W.Wong;G.Sensabaugh;R.A.Mathies https://doi.org/10.1002/1522-2683(20000701)21:12<2352::AID-ELPS2352>3.0.CO;2-G
  10. Electrophoresis v.22 High-performance genetic analysis using microfabricated capil-lary array electrophoresis microplates Medintz,I;B.M.Paegel;R.G.Blazej;C.A.Emrich;L.Berti;J.R.Sherer;R.A.Mathies https://doi.org/10.1002/1522-2683(200110)22:18<3845::AID-ELPS3845>3.0.CO;2-0
  11. Electrophoresis v.22 Multiplexed enzyme assays in capillary electropho-retic single-use microfluidic devises Xue,Q;A.Wainright;S.Gangakhedkar;I.Gibbones https://doi.org/10.1002/1522-2683(200110)22:18<4000::AID-ELPS4000>3.0.CO;2-A
  12. Anal.Chem v.71 Microfabricated centrifugal microfluidic systems:Characterization and multiple enzymatic assays Duffy,D.C;G.J.Kellogg https://doi.org/10.1021/ac990682c
  13. Anal.Chem v.69 Microchip-based capillary electrophoresis for immunoassays:Analysis of monoclonal antibodies and theophyline Chiem,N;D.J.Harrison https://doi.org/10.1021/ac9606620
  14. Anal.Chem v.68 Intergrated mi-crodevice for DNA restriction fragment analysis Jacobson,S.C;J.M.Ramsey https://doi.org/10.1021/ac951230c
  15. Anal.Chem v.73 Development of a multichannel microfludic analysis system employing affin-ity capillary electrophoresis for immunoassay Cheng,S.B;D.J.Harrison https://doi.org/10.1021/ac0007938
  16. Electrophoresis v.21 Capillary electrophoresis on microchip Dolnik,V;S.Liu;S.Jovanovich https://doi.org/10.1002/(SICI)1522-2683(20000101)21:1<41::AID-ELPS41>3.0.CO;2-7
  17. Anal.Chem v.69 Transport,manipu-lation,and reaction of biological cells on-chip using elec-trokinetic effects Li.P.C.H;D.J.Harrison https://doi.org/10.1021/ac9606564
  18. Anal.Chem v.63 Internal stan-dardization technique for capillary zone electrophoresis Dose,E.V;G.A.Guiochon https://doi.org/10.1021/ac00011a018
  19. Anal.Chem v.64 Compensationg ofor instrumental and sampling biases accompanying electroki-netic injection in capillary zon electrophoresis Thomas,T.L;S.Y.Edward https://doi.org/10.1021/ac00035a007
  20. J.Chromatogr.A v.894 Effect of ionic strength,pH and polymer concentration on the separation of DNA fragments in the presence of electroosmotic flow Tseng,W.L;H.T.Chang https://doi.org/10.1016/S0021-9673(00)00721-4
  21. Electrophoresis v.22 A fluoregenic assay using pressure-driven flow on a microchip kerby,M;R.L.Chien https://doi.org/10.1002/1522-2683(200110)22:18<3916::AID-ELPS3916>3.0.CO;2-V
  22. Fresenius J.Anal.Chem v.371 Multiport flow-control system for lab-on-a-chip microfluidic devices Chien,R.L;J.W.Parce https://doi.org/10.1007/s002160100960
  23. Science v.282 An integrated nanoliter DNA analysis device Burns,N.S;B.N.Johnson;S.N.Brahmasandra;K.Handique;J.R.Webster;M.Krishnan;T.S.Sammarco;P.M.Man;D.Jones;D.Heldsinger;C.H.Mastrangelo;D.T.Burke https://doi.org/10.1126/science.282.5388.484
  24. Anal.Chem v.68 Functional integra-tion of PCR amplification and capillary electrophoresis in a microfabricated DNA analysis device Woolley,A.T;D.Hadley;P.Landre;A.J.deMello;R.A.Mathies;M.A.Northrup https://doi.org/10.1021/ac960718q
  25. Anal.Biochem v.257 Integrated cell isolation and polymerase chain reaction analysis using silicon mi-crofilter chambers Wilding,P;L.J.Kricka;J.Cheng;G.Hvichia;M.A.Shoffner;P.Fortina https://doi.org/10.1006/abio.1997.2530
  26. Microsystem Technologies Fabrication of the PDMS microchip for se-rially diluting biological sample with buffer Bang,H.S;S.J.Park;C.Chung;D.C.Han;J.K.Chang
  27. Anal.Chem v.71 Microfluidic devices for electrokinetically driven parallel and serial mixing Jacobson,S.C;T.E.McKnight;J.M.Ramsey https://doi.org/10.1021/ac9904617
  28. Electrophoresis v.21 Fabrication of microfluidic systems in poly(dimethylsiloxane) McDonald,J.C;D.C.Duffy;J.R.Anderson;D.T.Chiu;H.Wu;O.J.A.Schueller;G.M.Whitesides https://doi.org/10.1002/(SICI)1522-2683(20000101)21:1<27::AID-ELPS27>3.0.CO;2-C
  29. Anal.Chem v.73 Microchip injection and separation anomalies due to pressure effects Crabtree,H.J;E.C.S.Cheong;D.A.Tilroe;C.J.Backhouse https://doi.org/10.1021/ac010217r
  30. Anal.Chem v.60 Current-monitoring method for measuring the electroosmotic flow rate in capillary zone electrophoresis Huang,X;M.J.Gordon;R.N.Zare https://doi.org/10.1021/ac00168a040
  31. Electrophoresis v.21 Electrokinetic control of fluid flow in native poly(dimethylsiloxane) capillary electropho-resis devices Ocvirk,G;M.Munroe;T.Tang;R.Oleschuk;K.Westra;D.J.Harrison https://doi.org/10.1002/(SICI)1522-2683(20000101)21:1<107::AID-ELPS107>3.0.CO;2-Y
  32. Langmuir v.16 Generation of solution and surface gradients using microfluidic systems Jeon,N.L;S.K.W.Dertinger;D.T.Chiu;I.S.Choi;A.D.Stroock;G.M.Whitesides https://doi.org/10.1021/la000600b
  33. Anal.Chem v.73 Electrokinetic instability micromixing Oddy,M.H;J.G.Santiago;J.C.Mikkelsen https://doi.org/10.1021/ac0155411
  34. Electrophoresis v.22 Nanoliter capillary electrochromatography col-umns based on collocated monolithic support structures molded in poly(dimethyl siloxane) Slentz,B.E;N.A.Penner;E.Lugowska;F.Regnier https://doi.org/10.1002/1522-2683(200109)22:17<3736::AID-ELPS3736>3.0.CO;2-Y