• 제목/요약/키워드: force density

검색결과 1,208건 처리시간 0.031초

가상공극개념을 이용한 연구자석의 전체전자기력과 상호체적력밀도 계산 (Evaluation of Global Force and Interaction Body Force Density in Permanent Magnet Employing Virtual Air-gap Concept)

  • 이세희
    • 전기학회논문지
    • /
    • 제58권2호
    • /
    • pp.278-284
    • /
    • 2009
  • The global force and interaction body force density were evaluated in permanent magnets by using the virtual air-gap scheme incorporating the finite-element method. Until now, the virtual air-gap concept has been successfully applied to calculate a contact force and a body force density in soft magnetic materials. These force calculating methods have been called as generalized methods such as the generalized magnetic charge force density method, the generalized magnetizing current force density method, and the generalized Kelvin force density method. For permanent magnets, however, there have been few research works on a contact force and a force density field. Unlike the conventional force calculating methods resulting in surface force densities, the generalized methods are novel methods of evaluating body force density. These generalized methods yield the actual total force, but their distributions have an irregularity, which seems to be random distributions of body force density. Inside permanent magnets, however, a smooth pattern was obtained in the interaction body force density, which represents the interacting force field among magnetic materials. To evaluate the interaction body force density, the intrinsic force density should be withdrawn from the total force density. Several analysis models with permanent magnets were tested to verify the proposed methods evaluating the interaction body force density and the contact force, in which the permanent magnet contacts with a soft magnetic material.

등가자기회로를 이용한 리니어모터의 추력밀도계산 (Calculation of Force Density in Linear Motor Using Equivalent Magnetic Circuit)

  • 홍정표;강도현;주수원;한성진
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 춘계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.96-98
    • /
    • 2001
  • In this paper, the equivalent magnetic circuit and FEM are used to calculate force density of linear BLDC motor. The equivalent magnetic circuit is hard to exact compose for analysis model and it is just applied to linear system. To flexible design and reducing the calculated and analyzed time, magnetic circuit has to be used for designing the linear BLDC motor and deducing equation of force density. Force density as parameter of permanent magnet and coil-side width that are important to determined force density can be estimated using equation of force density. FEM is used to prove reliability of equation of force density and to consider the nonlinear system. Equivalent magnetic circuit and result of FEM are similar, but it is little different by friction loss at the experiment.

  • PDF

자기시스템의 Korteweg-Helmholtz 전자력 밀도와 자하 전자력 밀도의 비교 (Comparison of Korteweg-Helmholtz Electromagnetic Force Density and Magnetic Charge Force Density in Magnetic Systems)

  • 이세희;최명준;박일한
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제49권4호
    • /
    • pp.226-232
    • /
    • 2000
  • In magnetic systems, distribution of electromagnetic force density causes mechanical deformation, which results in noise and vibration. In this paper, Korteweg-Helmholtzs energy method and equivalent magnetic charge method are employed for comparison of their resulting distributions of force density. The force density from the Korteweg-Helmholtzs method is expresses with two Maxwell stresses on the inside and the outside fo magnetic material respectively. The other is calculated using the magnetic Coulombs law. In the numerical model of an electromagnet, their numerical results are compared. The distributions by the two methods are almost the same. And their total forces are also shown to be the same to the one calculated from the conventional Maxwell stress tensor. But the magnetic charge method is easier and more efficient in numerical calculation.

  • PDF

An Extended Force Density Method for the form finding of cable systems with new forms

  • Malerba, P.G.;Patelli, M.;Quagliaroli, M.
    • Structural Engineering and Mechanics
    • /
    • 제42권2호
    • /
    • pp.191-210
    • /
    • 2012
  • The Force Density Method (FDM) is a well known and extremely versatile tool in form finding of cable nets. In its linear formulation such method makes it possible to find all the possible equilibrium configurations of a net of cables having a certain given connectivity and given boundary conditions on the nodes. Each singular configuration corresponds to an assumed force density distribution. Its improvement as Non-Linear Force Density Method (NLFDM) introduces the possibility of imposing assigned relative distances among the nodes, the tensile level in the elements and/or their initial undeformed length. In this paper an Extended Force Density Method (EFDM) is proposed, which makes it possible to set conditions in terms of given fixed nodal reactions or, in other words, to fix the positions of a certain number of nodes and, at the same time, to impose the intensity of the reaction force. Through such extension, the (EFDM) enables us to deal with form findings problems of cable nets subjected to given constraints and, in particular, with mixed structures, made of cables and struts. The efficiency and the robustness of method are assessed through comparisons with other form finding techniques in dealing with characteristic applications to the prestress design of cable systems. As a further extension, the EFDM is applied to structures having some parts not yet geometrically defined, as can happen in designing new creative forms.

Design and Analysis of a Dual-Stator Spoke-Type Linear Vernier Machine for Wave Energy Extraction

  • Khaliq, Salman;Kwon, Byung-il
    • Journal of Electrical Engineering and Technology
    • /
    • 제11권6호
    • /
    • pp.1700-1706
    • /
    • 2016
  • In this paper, a dual-stator, spoke-type linear vernier machine (DSSLVM) for wave energy extraction application was proposed. This machine is capable of producing a competitively high thrust force and force density at a low operation speed in direct drive systems. The operation principal and working of the proposed DSSLVM were studied. The stator core height is adjusted to improve the overall force density of the proposed machine while reducing the force ripple. To evaluate the advantages of the proposed DSSLVM, the main performance was compared with that of a recently developed linear primary permanent magnet vernier machine (LPPMVM). The proposed machine exhibited greater thrust force and force density, an improved power factor and lower force ripple with the same permanent magnet (PM) volume compared to the LPPMVM.

Modified nonlinear force density method for form-finding of membrane SAR antenna

  • Xu, Rui;Li, DongXu;Liu, Wang;Jiang, JianPing;Liao, YiHuan;Wang, Jie
    • Structural Engineering and Mechanics
    • /
    • 제54권6호
    • /
    • pp.1045-1059
    • /
    • 2015
  • Form-finding for cable-membrane structures is a delicate operation. During the last decades, the force density method (FDM) was considered to be an efficient method to address the problem. Many researchers were devoted to improving this method and proposed many methods such as natural force density method (NFDM), improved nonlinear force density method (INFDM), et al. In this paper, a modified nonlinear force density method (MNFDM) is proposed. In this method, the stresses of membrane elements were transformed to the force-densities of cable nets by an equivalent relationship, and then they can be used as initial conditions. By comparing with the forming finding results by using the FDM, NFDM, INFDM and MNFDM, it had demonstrated that the MNFDM presented in this paper is the most efficient and precise.

밸브구동용 선형 포스모터 설계를 위한 해석 연구 (A Study of Analyzing for Design of a Linear Force Motor for Hydraulic Valve)

  • 박창순;허준영
    • 유공압시스템학회논문집
    • /
    • 제8권1호
    • /
    • pp.26-31
    • /
    • 2011
  • To drive hydraulic valve is used Linear force motor, whose force and direction are controlled by electronic signals. Linear force motor has complicated figure and its force produced by changing of flux density which is produced by permanent magnet and electrical winding. Therefore it is needed an exact calculation of the flux density. In this paper a Linear force motor is designed and analysed by 3d program Flu calculating the flux density in air gap and in yoke, Force by different current. The analysed data will be tested by prototype Linear force motor. The data and analysing method can be used for designing Linear force motor.

3차원 등가자기회로망법을 이용한 Brushless DC 모터의 진동원으로서의 Radial Force Density 해석 (Analysis of Radial Force Density as a Vibration Source in Brushless DC Motor Using 3D Equivalent Magnetic Circuit Network Method)

  • 전연도;허진;윤상백;홍정표;현동석
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1997년도 하계학술대회 논문집 A
    • /
    • pp.171-173
    • /
    • 1997
  • This paper presents analysis of the radial force density in brushless DC motor of which distribution is not uniform in the axial direction. The analysis considering 3D shape of teeth and overhang is not only important but essential to calculate the radial force density that acts on the teeth of stator, because it is frequent source of vibration and changes at the end of teeth. For the analysis, a new 3D equivalent magnetic circuit network method taking into account movement of the rotor without remesh is proposed. The radial force density is calculated by Maxwell stress tensor and analyzed by discrete Fourier transform.

  • PDF

Force-finding of Tensegrity Structure using Optimization Technique

  • Lee, Sang Jin
    • Architectural research
    • /
    • 제17권1호
    • /
    • pp.31-40
    • /
    • 2015
  • A simple force-finding process based on an optimization technique is proposed for tensegrity structures. For this purpose, the inverse problem of form-finding process is formulated. Therefore, the position vector of nodes and element connectivity information are provided as priori. Several benchmark tests are carried out to demonstrate the performance of the present force-finding process. In particular, the force density distributions of simplex tensegrity are thoroughly investigated with the important parameters such as the radius, height and twisting angle of simplex tensegrity. Finally, the force density distribution of arch tensegrity is produced by using the present force-finding process for a future reference solution.

압흔하중식에 의한 금속소결분말체내에서의 밀도분포 예측 (Prediction of Density Distribution in Sintered Metal Powder Compacts by Indentation Force Equation)

  • 박종진
    • 한국분말재료학회지
    • /
    • 제4권3호
    • /
    • pp.188-195
    • /
    • 1997
  • In most of sintered metal powder compacts, the sintered density distribution is controlled to be as high and uniform as possible to ensure the required mechanical properties. In general, the density distribution in the compacts is not uniform and not easy to measure. In the present study, a method for measuring the density distribution was developed, based on the indentation force equation by which the hardness and the relative density were related. The indentation force equation, expressed as a function of strength constant, workhardening coefficient and relative density, was obtained by finite element analysis of rigid-ball indentation on sintered powder metal compacts. The present method was verified by comparing the predicted density distribution in the sintered Fe-0.5%C-2%Cu compacts with that obtained by experiments, in which the density distribution was directly measured by machining the compacts from the outer surface progressively.

  • PDF