• Title/Summary/Keyword: footings/foundations

Search Result 24, Processing Time 0.018 seconds

The effects of foundation size on the seismic performance of buildings considering the soil-foundation-structure interaction

  • Nguyen, Quoc Van;Fatahi, Behzad;Hokmabadi, Aslan S.
    • Structural Engineering and Mechanics
    • /
    • v.58 no.6
    • /
    • pp.1045-1075
    • /
    • 2016
  • Shallow footings are one of the most common types of foundations used to support mid-rise buildings in high risk seismic zones. Recent findings have revealed that the dynamic interaction between the soil, foundation, and the superstructure can influence the seismic response of the building during earthquakes. Accordingly, the properties of a foundation can alter the dynamic characteristics (natural frequency and damping) of the soil-foundation-structure system. In this paper the influence that shallow foundations have on the seismic response of a mid-rise moment resisting building is investigated. For this purpose, a fifteen storey moment resisting frame sitting on shallow footings with different sizes was simulated numerically using ABAQUS software. By adopting a direct calculation method, the numerical model can perform a fully nonlinear time history dynamic analysis to realistically simulate the dynamic behaviour of soil, foundation, and structure under seismic excitations. This three-dimensional numerical model accounts for the nonlinear behaviour of the soil medium and structural elements. Infinite boundary conditions were assigned to the numerical model to simulate free field boundaries, and appropriate contact elements capable of modelling sliding and separation between the foundation and soil elements are also considered. The influence of foundation size on the natural frequency of the system and structural response spectrum was also studied. The numerical results for cases of soil-foundation-structure systems with different sized foundations and fixed base conditions (excluding soil-foundation-structure interaction) in terms of lateral deformations, inter-storey drifts, rocking, and shear force distribution of the structure were then compared. Due to natural period lengthening, there was a significant reduction in the base shears when the size of the foundation was reduced. It was concluded that the size of a shallow foundation influences the dynamic characteristics and the seismic response of the building due to interaction between the soil, foundation, and structure, and therefore design engineer should carefully consider these parameters in order to ensure a safe and cost effective seismic design.

The exact bearing capacity of strip footings on reinforced slopes using slip line method

  • Majd Tarrafa;Ehsan Seyedi Hosseininia
    • Geomechanics and Engineering
    • /
    • v.38 no.3
    • /
    • pp.261-273
    • /
    • 2024
  • This study presents a groundbreaking analytical approach to find an exact solution for the bearing capacity of strip footings on reinforced slopes, utilizing the two-phase approach and slip line method. The two-phase approach is considered as a generalized homogenization technique. The slip line method is leveraged to derive the stress field as a lower bound solution and the velocity field as an upper bound solution, thereby facilitating the attainment of an exact solution. The key finding points out the variation of the bearing capacity factor Nγ with influencing factors including the backfill soil friction angle, the footing setback distance from the slope crest edge, slope angle, strength, and volumetric fraction of inclusion layers. The results are evaluated by comparing them with those of relevant studies in the literature considering analytical and experimental studies. Through the application of the two-phase approach, it becomes feasible to determine the tensile loads mobilized along the inclusion layers associated with the failure zone. It is attempted to demonstrate the results by utilizing non-dimensional graphs to clearly illustrate variable impacts on reinforced soil stability. This research contributes significantly to advancing geotechnical engineering practices, specifically in the realm of static design considerations for reinforced soil structures.

Rotational capacity of shallow footings and its implication on SSI analyses

  • Blandon, Carlos A.;Smith-Pardo, J. Paul;Ortiz, Albert
    • Earthquakes and Structures
    • /
    • v.8 no.3
    • /
    • pp.591-617
    • /
    • 2015
  • Standards for seismic assessment and retrofitting of buildings provide deformation limit states for structural members and connections. However, in order to perform fully consistent performance-based seismic analyses of soil-structure systems; deformation limit states must also be available for foundations that are vulnerable to nonlinear actions. Because such limit states have never been established in the past, a laboratory testing program was conducted to study the rotational capacity of small-scale foundation models under combined axial load and moment. Fourteen displacement-controlled monotonic and cyclic tests were performed using a cohesionless soil contained in a $2.0{\times}2.0{\times}1.2m$ container box. It was found that the foundation models exhibited a stable hysteretic behavior for imposed rotations exceeding 0.06 rad and that the measured foundation moment capacity complied well with Meyerhof's equivalent width concept. Simplified code-based soil-structure analyses of an 8-story building under an array of strong ground motions were also conducted to preliminary evaluate the implication of finite rotational capacity of vulnerable foundations. It was found that for the same soil as that of the experimental program foundations would have a deformation capacity that far exceeds the imposed rotational demands under the lateral load resisting members so yielding of the soil may constitute a reliable source of energy dissipation for the system.

Foundation Analysis and Design Using CPT Results : Settlement Estimation of Shallow Foundation (CPT 결과를 이용한 기초해석 및 설계 : 얕은 기초의 침하량 산정)

  • 이준환;박동규
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.8
    • /
    • pp.5-14
    • /
    • 2004
  • The settlement of foundations under working load conditions is an important design consideration. Well-designed foundations induce stress-strain states in the soil that are neither in the linear elastic range nor in the range usually associated with perfect plasticity. Thus, in order to accurately predict working settlements, analyses that are more realistic than simple elastic analyses are required. The settlements of footings in sand are often estimated based on the results of in-situ tests, particularly the standard penetration test (SPT) and the cone penetration test (CPT). In this paper, we analyze the load-settlement response of vertically loaded footings placed in sands using both the finite element method with a non-linear stress-strain model and the conventional elastic approach. Based on these analyses, we propose a procedure for the estimation of footing settlement in sands based on CPT results.

Bearing capacity of strip footings on a stone masonry trench in clay

  • Mohebkhah, Amin
    • Geomechanics and Engineering
    • /
    • v.13 no.2
    • /
    • pp.255-267
    • /
    • 2017
  • Soft clay strata can suffer significant settlement or stability problems under building loads. Among the methods proposed to strengthen weak soils is the application of a stone masonry trench (SMT) beneath RC strip foundations (as a masonry pad-stone). Although, SMTs are frequently employed in engineering practice; however, the effectiveness of SMTs on the ultimate bearing capacity improvement of a strip footing rested on a weak clay stratum has not been investigated quantitatively, yet. Therefore, the expected increase of bearing capacity of strip footings reinforced with SMTs is of interest and needs to be evaluated. This study presents a two-dimensional numerical model using the discrete element method (DEM) to capture the ultimate load-bearing capacity of a strip footing on a soft clay reinforced with a SMT. The developed DEM model was then used to perform a parametric study to investigate the effects of SMT geometry and properties on the footing bearing capacity with and without the presence of surcharge. The dimensions of the SMTs were varied to determine the optimum trench relative depth. The study showed that inclusion of a SMT of optimum dimension in a soft clay can improve the bearing capacity of a strip footing up to a factor of 3.5.

Reliability analysis-based safety factor for stability of footings on frictional soils

  • Parviz Tafazzoli Moghaddam;Pezhman Fazeli Dehkordi;Mahmoud Ghazavi
    • Geomechanics and Engineering
    • /
    • v.33 no.6
    • /
    • pp.543-552
    • /
    • 2023
  • The design of foundations based on a deterministic approach may not be safe and reliable occasionally, since soils sometimes show considerable spatial variability, and thus, significant uncertainties in turn affect the estimation of footing bearing capacity. The design of footing on cohesionless stratums on the basis of reliability analysis has not received much attention. This paper performs two-dimensional random finite difference analyses of shallow strip footings on a spatially variable frictional soil considering correlation structure. Friction angle (ϕ) is considered as a log-normally distributed random variable and Monte Carlo Simulation is then performed to determine the statistical response based on the random fields. A new approach reliability-based safety factor is defined based on various reliability levels by considering the coefficient of variation of ϕ and correlation length in both the horizontal and vertical directions. The comparison of the probabilistic safety factor and the conventional one illustrates the limitations of the deterministic safety factor and provides insight into how the heterogeneity of soils properties affects the required safety factor. Results show that the conventional safety factor of 3 can be conservative in some cases, especially for soil with low values of mean ϕ and COVϕ.

Piled Raft Foundations (말뚝지지 전면기초)

  • Kwon, Oh-Kyun;Lee, Whoal
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.11a
    • /
    • pp.102-117
    • /
    • 2002
  • The general design practice for piled footings is based on the assumption that the piles are free-standing, and that all the external loads are carried by the piles, with any contribution of the footing being ignored. This approach is not reasonable, because the footing itself is actually in direct contact with the soil, and thus carries a significant fraction of the loads. In the case of not considering the bearing capacity of footing, the bearing capacity of group piles can be evaluated conservatively in the designing the group piles. There are a number of reasons why the idea of piled raft design with considering the capacity of footing has not become widely used. One of the reasons is the lack of reliable calculation methods for estimating the behavior of piled raft. In this study the bearing capacity, settlement, load distribution, etc. of piled raft footing are studied.

  • PDF

Comparison of Bearing Capacity Calculation Methods for Shallow Foundations (얕은기초의 지지력 산정방법에 관한 비교 연구)

  • 천병식;이정훈;김수봉
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.455-462
    • /
    • 2003
  • The current practice of estimating bearing capacity usually employs the conventional bearing capacity formula originally developed for strip footings under vertical central loading, In order account for the effect of footing shape and eccentricity and inclination of loads, correction factors are introduced in the formula, which are derived based on a number of small-scale model test observations. In this paper, comparison of several formulations of bearing capacity factors, as well as values of these factors, are presented. And the conventional bearing capacity equations are compared with some of other failure loci proposed for cohesive soil. Also, the bearing capacity of shallow foundation estimated by the conventional bearing capacity equations are compared with the experimental load test results.

  • PDF

Temperature Crack Control in Slab Type구s Mass Concrete Structures (슬래브형 매스콘크리트 구조물의 온도균열제어)

  • 김동석;구본창;하재담;진형하;오승제;변근주
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.333-336
    • /
    • 1999
  • The crack of concrete induced by the heat of hydration is a serious problem, particularly in concrete structures such as mat-slab of nuclear reactor buildings, dams or large footings, foundations of high rise buildings, etc.. As a result of the temperature rise and restriction condition of foundation, the thermal stress which may induce the cracks can occur. Therefore the various techniques of the thermal stress control in massive concrete have been widely used. One of them is prediction of the thermal stress, besides low-heat cement which mitigates the temperature rise, pre-cooling which lowers the initial temperature of fresh concrete with ice flake, pipe cooling which cools the temperature of concrete with flowing water, design change which considers steel bar reinforcement, operation control and so on. The Aim of this paper is to verify the effect of low heat blended cement in reducing thermal stress in slab type's mass concrete such as container harbor structures.

  • PDF

An Experimental Study on Reinforcement Method for Reuse of Onshore Wind Turbine Spread Footing Foundations (육상풍력터빈 확대기초의 재사용을 위한 보강방법에 관한 실험적 연구)

  • Song, Sung Hoon;Jeong, Youn Ju;Park, Min Su;Kim, Jeong Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.41 no.1
    • /
    • pp.1-11
    • /
    • 2021
  • In order to reuse existing onshore turbine foundations, it is important to redesign and reinforce the existing foundations according to the upgraded tower diameter and turbine load. In the present study, a slab extension reinforcement method and structure details of an anchorage part were examined in consideration of the reuse of spread footings, which are the most widely used foundation type in onshore wind turbine foundations. Experiments were conducted to evaluate the load resistance performance of a reinforced spread footing according to structure details of an anchorage part. The results showed that (1) the strength of an anchorage part could be increased by more than 30 % by adding reinforcement bars in the anchorage part, (2) pile-sleeves attached to an anchor ring contributed to an increase in rotational stiffness by preventing shear slip behavior between the anchor ring and the concrete, and (3) slab connectors contributed to an increase in the strength and deformation capacity by preventing the separation of new and old concrete slabs.