DOI QR코드

DOI QR Code

The exact bearing capacity of strip footings on reinforced slopes using slip line method

  • Majd Tarrafa (Department of Civil Engineering, Faculty of Engineering, Ferdowsi University of Mashhad) ;
  • Ehsan Seyedi Hosseininia (Department of Civil Engineering, Faculty of Engineering, Ferdowsi University of Mashhad)
  • Received : 2023.02.03
  • Accepted : 2024.07.17
  • Published : 2024.08.10

Abstract

This study presents a groundbreaking analytical approach to find an exact solution for the bearing capacity of strip footings on reinforced slopes, utilizing the two-phase approach and slip line method. The two-phase approach is considered as a generalized homogenization technique. The slip line method is leveraged to derive the stress field as a lower bound solution and the velocity field as an upper bound solution, thereby facilitating the attainment of an exact solution. The key finding points out the variation of the bearing capacity factor Nγ with influencing factors including the backfill soil friction angle, the footing setback distance from the slope crest edge, slope angle, strength, and volumetric fraction of inclusion layers. The results are evaluated by comparing them with those of relevant studies in the literature considering analytical and experimental studies. Through the application of the two-phase approach, it becomes feasible to determine the tensile loads mobilized along the inclusion layers associated with the failure zone. It is attempted to demonstrate the results by utilizing non-dimensional graphs to clearly illustrate variable impacts on reinforced soil stability. This research contributes significantly to advancing geotechnical engineering practices, specifically in the realm of static design considerations for reinforced soil structures.

Keywords

References

  1. Acharyya, R. and Dey, A. (2018), "Assessment of bearing capacity and failure mechanism of single and interfering strip footings on sloping ground", Int. J. Geotech. Eng., 15(7), 822-833. https://doi.org/10.1080/19386362.2018.1540099.
  2. Afsharpour, S., Payan, M., Chenari, R.J., Ahmadi, H. and Fathipour, H. (2022), "Bearing capacity of strip footings on unsaturated soils under combined loading using LEM", Geomech. Eng., 31(2): 223-235. https://doi.org/10.12989/gae.2022.31.2.223.
  3. Afzali-Nejad, A., Lashkari, A. and Martinez, A. (2021), "Stress-displacement response of sand-geosynthetic interfaces under different volume change boundary conditions", J. Geotech. Geoenviron. Eng., 147(8), 04021062. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002544.
  4. Ahmadi, R., Jahromi, S.G. and Shabakhty, N. (2022), "Reliability analysis of external and internal stability of reinforced soil under static and seismic loads", Geomech. Eng., 29(6), 599-614. https://doi.org/10.12989/gae.2022.29.6.599.
  5. Ardakani, A. and Namaei, A. (2021), "Numerical investigation of geocell reinforced slopes behavior by considering geocell geometry effect", Geomech. Eng., 24(6), 589-597. https://doi.org/10.12989/gae.2021.24.6.589.
  6. Ausilio, E. (2014), "Seismic bearing capacity of strip footings located close to the crest of geosynthetic reinforced soil structures", Geotech. Geol. Eng., 32(4), 885-899. https://doi.org/10.1007/s10706-014-9765-4.
  7. Chakraborty, D. and Kumar, J. (2013), "Bearing capacity of foundations on slopes", Geomech. Geoeng., 8(4), 274-285. https://doi.org/10.1080/17486025.2013.770172.
  8. de Buhan, P. and Sudret, B. (1999), "A two-phase elastoplastic model for unidirectionally-reinforced materials", Eur. J. Mech. -A/Solids, 18(6), 995-1012. https://doi.org/10.1016/S0997-7538(99)00109-6.
  9. Gholami, H. and Seyedi Hosseininia, E. (2017), "Bearing capacity factors of ring footings by using the method of characteristics", Geotech. Geol. Eng., 35(5), 2137-2146. https://doi.org/10.1007/s10706-017-0233-9.
  10. Halder, K. and Chakraborty, D. (2020), "Probabilistic bearing capacity of strip footing on reinforced anisotropic soil slope", Geomech. Eng., 23(1), 15-30. https://doi.org/10.12989/gae.2020.23.1.015.
  11. Halder, K., Chakraborty, D. and Kumar Dash, S. (2019), "Bearing capacity of a strip footing situated on soil slope using a non-associated flow rule in lower bound limit analysis", Int. J. Geotech. Eng., 13(2), 103-111. https://doi.org/10.1080/19386362.2017.1325119.
  12. Hassine, W.B., Hassis, H. and de Buhan, P. (2008), "A macroscopic model for materials reinforced by flexible membranes", Mech. Res. Commun., 35(5), 310-319. https://doi.org/10.1016/j.mechrescom.2008.02.009.
  13. Honari, S. and Seyedi Hosseininia, E. (2016), "Numerical Modeling of Reinforced Soil Walls Using Multiphase Approach and Hyperbolic Constitutive Model".
  14. Jahanandish, M. and Keshavarz, A. (2005), "Seismic bearing capacity of foundations on reinforced soil slopes", Geotext. Geomembranes, 23(1), 1-25
  15. Javdanian, H. (2017), "On the behaviour of shallow foundations constructed on reinforced soil slope - a numerical analysis", Int. J. Geotech. Eng., 14(2), 188-195. https://doi.org/10.1080/19386362.2017.1416971.
  16. Li, C. and Jiang, P. (2022), "Method of rigorous characteristics for seismic bearing capacity of strip footings Placed adjacent to homogeneous soil slopes", Int. J. Geomech., 22(10), 04022179. https://doi.org/10.1061/(ASCE)GM.1943-5622.0002526.
  17. Luo, N. and Bathurst, R.J. (2017), "Reliability bearing capacity analysis of footings on cohesive soil slopes using RFEM", Comput. Geotech., 89: 203-212. https://doi.org/10.1016/j.compgeo.2017.04.013.
  18. Luo, N. and Bathurst, R.J. (2018), "Deterministic and random FEM analysis of full-scale unreinforced and reinforced embankments", Geosynth. Int., 25(2), 164-179. https://doi.org/10.1680/jgein.17.00040.
  19. Manna, D., Santhoshkumar, G. and Ghosh, P. (2021), "Upper-bound limit load of rigid pavements resting on reinforced soil embankments - Kinematic approach", Transport. Geotech., 30, 100611. https://doi.org/10.1016/j.trgeo.2021.100611.
  20. Michalowski, R.L. and Zhao, A. (1995), "Continuum versus structural approach to stability of reinforced soil", J. Geotech. Eng., 121(2), 152-162. https://doi.org/10.1061/(ASCE)0733-9410(1995)121:2(152).
  21. Nasrollahi, S.M. and Seyedi Hosseininia, E. (2019), "A simplified solution for piled-raft foundation analysis by using the two-phase approach", Comptes Rendus Mecanique, 34(10), 716-733. https://doi.org/10.1016/j.crme.2019.10.002
  22. Sarfarazi, V., Tabaroei, A. and Asgari, K. (2022), "Discrete element modeling of strip footing on geogrid-reinforced soil", Geomech. Eng., 29(4), 435-449. https://doi.org/10.12989/gae.2022.29.4.435.
  23. Sarvesh, R., Srinivasan, V. and Patel, A. (2023), "Finite element limit analysis of the bearing capacity of an obliquely loaded strip footing on granular soil placed adjacent to vertically loaded existing footing", Geomech. Eng., 35(3), 287-306. https://doi.org/10.12989/gae.2023.35.3.287.
  24. Seyedi Hosseininia, E. and Ashjaee, A. (2018). "Numerical simulation of two-tier geosynthetic-reinforced-soil walls using two-phase approach", Comput. Geotech., 100, 15-29. https://doi.org/10.1016/j.compgeo.2018.04.003.
  25. Seyedi Hosseininia, E. and Farzaneh, O. (2010), "Development and validation of a two-phase model for reinforced soil by considering nonlinear behavior of matrix", J. Eng. Mech. 136(6), 721-735. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000111.
  26. Seyedi Hosseininia, E. and Farzaneh, O. (2010), "A simplified two-phase macroscopic model for reinforced soils", Geotextiles and Geomembranes 28(1): 85-92. https://doi.org/10.1016/j.geotexmem.2009.09.009
  27. Seyedi Hosseininia, E. and Farzaneh, O. (2011), "A non-linear two-phase model for reinforced soils", Proceedings of the Institution of Civil Engineers - Ground Improvement, 164(4), 203-211. https://doi.org/10.1680/grim.9.00039.
  28. Sommers, A.N. and Viswanadham, B.V.S. (2009), "Centrifuge model tests on the behavior of strip footing on geotextile-reinforced slopes", Geotext. Geomembranes, 27(6), 497-505. https://doi.org/10.1016/j.geotexmem.2009.05.002.
  29. Tarraf, M. and Seyedi hosseininia, E. (2023), "Pullout capacity of horizontal circular plates embedded in sand using the method of stress characteristics", Mar. Georesour. Geotec., https://doi.org/10.1080/1064119X.2023.2287145
  30. Wang, Z., Jacobs, F., Ziegler, M. and Yang, G. (2020), "Visualisation and quantification of geogrid reinforcing effects under strip footing loads using discrete element method", Geotext. Geomembranes, 48(1), 62-70. https://doi.org/10.1016/j.geotexmem.2019.103505.
  31. Xie, Y., Leshchinsky, B. and Han, J. (2019), "Evaluation of bearing capacity on geosynthetic-reinforced soil structures considering multiple failure mechanisms", J. Geotech. Geoenviron. Eng., 145(9), 04019040. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002072
  32. Xu, P., Li, C., Hatami, K., Yang, G. and Liang Xunmei, X. (2022), "Finite element limit analysis of load-bearing performance of reinforced slopes using a non-associated flow rule", Geotext. Geomembranes, 50(5), 1020-1035. https://doi.org/10.1016/j.geotexmem.2022.07.002.
  33. Yu, H.S. (2007), Plasticity and geotechnics, Springer Science & Business Media.
  34. Zhao, A. (1996), "Failure loads on geosynthetic reinforced soil structures", Geotext. Geomembranes, 14(5), 289-300. https://doi.org/10.1016/0266-1144(96)89796-2.
  35. Zhao, A. (1996), "Limit analysis of geosynthetic-reinforced soil slopes", Geosynth. Int., 3(6), 721-740. https://doi.org/10.1680/gein.3.0082.