• Title/Summary/Keyword: foliar disease

검색결과 100건 처리시간 0.03초

Gene Expression Analysis in Cucumber Leaves Primed by Root Colonization of Pseudomonas chlororaphis O6 upon Challenge-inoculation with Corynespora cassiicola.

  • Kim, M.;Kim, Y. C.;B. H. Cho
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 한국식물병리학회 2003년도 정기총회 및 추계학술발표회
    • /
    • pp.90.1-90
    • /
    • 2003
  • Colonization of Pseudomonas chlororaphis O6, a nonpathogenic rhizobacterium, on the roots induced systemic resistance in cucumber plants against tai-get leaf spot, a foliar disease caused by Corynespora cassiicola. A cDNA library was constructed using mRNA extracted from the cucumber leaves 12 h after inoculation with C. cassiicola, which roots had been previously treated with O6. To identify the genes involved in the O6-mediated induced systemic resistance (ISR), we employed a subtractive hybridization method using mRNAs extracted from C cassiicola-inoculated cucumber leaves with and without previous O6 treatment on the plant roots. Differential screening of the cDNA library led to the isolation of 5 distinct genesencoding a GTP-binding protein, a putative senescence-associated protein, a galactinol synthase, a hypersensitive-induced reaction protein, and a putative aquaporin. Expressions of these genes are not induced by O6 colonization alone. Before challenge inoculation, no increase in the gene transcriptions could be detected in previously O6-treated and untreated plants but, upon subsequent inoculation with the pathogenic fungus, transcription levels in O6-treated plants rose significantly faster and stronger than in untreated plants. Therefore, the O6-mediated ISR may be associated with an enhanced capacity for the rapid and effective activation of cellular defense responses which becomes apparent only after challenge inoculation on the distal, untreated plant parts, as suggested by Conrath et al. (2002). This work was supported by a grant R11-2001-092-02006-0 from the Korea Science and Engineering Foundation through the Agricultural Plant Stress Research Center at Chonnam National University.

  • PDF

Suppression of Powdery Mildew Using the Water Extract of Xylogone ganodermophthora and Aqueous Potassium Phosphonate Solution on Watermelon under Greenhouse Conditions (Xylogone ganodermophthora 배양체 추출물 및 아인산칼륨 수용액을 이용한 시설수박 흰가루병 발생 억제효과)

  • Kang, Hyo-Jung;Kim, Youngsang;Kim, Taeil;Jeong, Taek Ku;Han, Chong U;Nam, Sang Young;Kim, Ik-Jei
    • Research in Plant Disease
    • /
    • 제21권4호
    • /
    • pp.309-314
    • /
    • 2015
  • Xylogone ganodermophthora (Xg) is an ascomycetous fungus that causes yellow rot on cultivated Ganoderma lucidum. Previously, we reported in vitro antifungal activities of a Xg culture extract against several watermelon pathogens. In 2014, we conducted greenhouse experiments to evaluate the control efficacy of a water extract of cultured Xg on watermelon powdery mildew (WPM). The test material (stock solution, ca. $4,000{\mu}g/ml$) was prepared by an autoclaved Xg culture in water at a ratio of 800 g of culture per 6 liter of water, and then filtering it through filter paper. Six foliar applications of the solutions (diluted 100- and 1,000-fold) significantly suppressed the formation of conidiophores and conidia. The inhibitory effect of aqueous potassium phosphonate solution on the disease and its phytotoxicity was tested. Phytotoxicity on watermelon plants was observed at concentrations of 1,000 and $2,000{\mu}g/ml$ as irregular brownish spots. The control efficacies against WPM were 91.9% at $2,000{\mu}g/ml$, 64.9% at $1,000{\mu}g/ml$, and 62.2% at $500{\mu}g/ml$.

Evaluation of Forage Production of Sorghum for High-Yielding Hybrid (우량 품종의 선발을 위한 사초용 수수의 생산성 평가)

  • Kim, J.D.;Kwon, C.H.;Kim, S.G.;Park, H.S.;Ko, H.J.;Kim, D.A.
    • Journal of Animal Science and Technology
    • /
    • 제44권5호
    • /
    • pp.625-632
    • /
    • 2002
  • Livestock farmers face several limitations when using the government recommended sorghum cultivars for forage because of the limited seed supply. Therefore, the objective of the this study is to evaluate, select, and recommend the best high-yielding hybrid as the government recommended cultivars. The agronomic characteristics and forage yield of three cultivars (cv. P947, cv. KF429 and cv. SS405) of forage sorghum were evaluated at two locations (Suwon and Sunghwan) for 2 years (1999${\sim}$2000). 'KF429' was susceptible to foliar disease, while 'SS405' had less lodging resistance among the sorghum cultivars tested. When compared with 'P947' (recommended cultivar), dry matter yield of 'KF429' and 'SS405' cultivars increased by 16% and 75%, respectively. The crude protein of 'P947'(9.4%) was higher than other cultivars. The percentage of ADF and NDF were the lowest in 'KF429' cultivar. The results of forage performance experiment indicate that 'KF429' and 'SS405' are recommended as the government recommended sorghum cultivars due to a high lodging tolerance, disease resistance, and high dry matter yield.

Control of Paprika Powdery Mildew Using Cooking Oil and Yolk Mixture (난황유를 이용한 파프리카 흰가루병 방제)

  • Lee, Jung-Han;Han, Ki-Soo;Kwon, Young-Sang;Kim, Dong-Kil;Kim, Hee-Kyu
    • Research in Plant Disease
    • /
    • 제14권2호
    • /
    • pp.112-116
    • /
    • 2008
  • Powdery mildew of Paprika caused by Leveillula taurica has been a serious problem in greenhouse. It is an unusual endophytic powdery mildew because the mycelia grow inside the leaf, such that the pale yellow lesions on adaxial surfaces appear first and the white powdery lesion/signs develop later on the corresponding to the spots of the abaxial leaf surface, where the conidiophores are typically emerge through the stomatal opening. Although one foliar application of cooking oil and yolk mixture(COY) to the foliage was not practically effective enough, two or three, weekly application of COY to the foliage at either 0.3 or 0.5% concentration resulted in excellent control against powdery mildew with disease index less/lower than 1, respectively. This treatment could provide protection for three weeks, which, we believe, is not only cost-effective, but also environment-friendly. Powdery mildew fungus was affected by COY treatment quickly which is recognizable in three days. Net photosynthesis and evapotranspiration was remarkably reduced by powdery mildew infection compared to healthy leaves, suggesting that prevention and early protection is the most critical strategy for peak paprika fruit yield. Moreover, COY treatment did not adversely affect the photosynthesis and evapotranspiration of foliages.

Control of Powdery Mildew on Solanaceous Crops by Using COY (Cooking Oil and Yolk Mixture) in the Greenhouse (난황유를 이용한 가지과 작물의 흰가루병 방제)

  • Kwon, Jin-Hyeuk;Shim, Chang-Ki;Jee, Hyeong-Jin;Park, Chang-Seuk
    • Research in Plant Disease
    • /
    • 제15권1호
    • /
    • pp.23-29
    • /
    • 2009
  • Cooking oil and yolk mixture (COY), a environmentally acceptable plant protection agent, and COY+$CaCO_3$+neem oil mixture were studied to control the powdery mildew occurring on eggplant, paprika, cherry tomato and maturity tomato in glass houses and vinyl houses during 2005 to 2007. The morphological changes of the pathogenic fungi on the leaf surface before and after treatment of COY were observed. COY made of rape seed oil and COY+$CaCO_3$+neem oil mixture were sprayed three times with 5 days interval to foliar parts of eggplant, paprika and tomato and the disease development were examined 5 days after final spray. In eggplant, the control efficacy of COY to powdery mildew was 94.6%. In paprika, the control efficacy of COY to powdery mildew was 91.6% and that of COY+$CaCO_3$+neem oil mixture was 96.2% that revealed little higher than COY itself. In tomatoes(cherry or maturity tomato), the control efficacy of COY were about 91 %, however, when COY mixture were sprayed to tomato leaves and stems the powdery mildew was controlled completely. Typical and healthy mycelia, conidiophores and condia were observed through scanning electron microscope in COY unsprayed leaf surface, on the other hand destroyed and winkled mycelia and conidiophores were observed in COY treated leaves regardless host plants nor taxonomic differences of fungi.

Study on the Control of Leaf Mold, Powdery Mildew and Gray Mold for Organic Tomato Cultivation (유기농 토마토 재배시 발생하는 잎곰팡이병, 흰가루병, 잿빛곰팡이병의 방제연구)

  • Hong, Sung-Jun;Park, Jong-Ho;Kim, Yong-Ki;Jee, Hyeong-Jin;Han, Eun-Jung;Shim, Chang-Ki;Kim, Min-Jeong;Kim, Jung-Hyun;Kim, Seung-Hyun
    • Korean Journal of Organic Agriculture
    • /
    • 제20권4호
    • /
    • pp.655-668
    • /
    • 2012
  • Foliar diseases are major constraints to profitable organic tomato production. Especially, powdery mildew, leaf mold and gray mold of tomato occur severely on organic cultured tomatoes in Korea. This study was conducted to develop organic tomato cultivation technology using environmental-friendly disease control methods (resistance cultivar planting, air circulation fan installation, oil-egg yolk mixtures, and microbial agents). When tomatoes were cultivated in plastic film house installed with air circulation fan, daily range of temperature was decreased by $2{\sim}7^{\circ}C$, average relative humidity was decreased by 1~5% compared to those in plastic house without air circulation fan. Consequently, incidence of tomato leaf mold and tomato gray mold was reduced by 55.0% and 24.4%, respectively. Control effect of microbial agents and oil-egg yolk mixtures against major tomato diseases was examined in plastic house. As a result, the control value of microbial agents against tomato gray mold and tomato leaf mold showed at the range of 49.0~55.9 %(gray mold) and 39.2~58.2%(leaf mold), respectively. The control value of oilegg yolk mixtures against tomato powdery mildew showed 97.6%. Fifteen tomato cultivars were evaluated for disease resistance against leaf mold and powdery mildew in organically cultivated tomato field. Among 15 tomato cultivars, seven cultivars including 'Super-top' were found to be high resistant to tomato leaf mold. Also 'Powerking', one of fifteen tomato cultivars, showed to be high resistant to tomato powdery mildew.

Control of Powdery Mildew by Foliar Application of a Suspension of Cheonggukjang (청국장 현탁액 오이 엽면처리에 의한 흰가루병 방제효과)

  • Kim, Min-Jeong;Shim, Chang-Ki;Kim, Yong-Ki;Hong, Sung-Jun;Park, Jong-Ho;Han, Eun-Jung;Jee, Hyeong-Jin;Kwon, Jin-Hyeuk;Kim, Seuk-Chul
    • Research in Plant Disease
    • /
    • 제21권2호
    • /
    • pp.58-66
    • /
    • 2015
  • This study was conducted to evaluate control efficacy of a fermented food 'Cheonggukjang' against cucumber powdery mildew caused by Sphaerotheca fuliginea in greenhouse. Sterilized Daepung beans were inoculated with the rice straw as natural inoculum and then incubated for 72 hrs at $42^{\circ}C$ in the household cheonggkjang maker. After 72 hrs of cheonggukjang fermentation, white zymogens were grown on the surface of a sterile Daepung beans. The pH of the 72 hrs fermented soybean was not significantly changed and electrical conductivity was found to increase by about 2 times than before fermentation. The population density of soybean zymogen showed a peak of growth at 60 hrs after fermentation and the concentration of zymogen was $8.2{\times}10^7cfu/ml$. Soybean zymogen form of the colony was divided into three kinds of bacteria and a white and a large colony (WL) was predominant bacteria among those up to 60 hrs of fermentation. To control the cucumber powdery mildew, diluted solutions of cheonggukjang was applied from 6.0% to 30.0% on cucumber leaves and they showed injury symptoms on cucumber leaves in more than 15% of them. However, more than 6.0% diluted cheonggukjang solutions showed more than 77.8% control effect of cucumber powdery mildew at 15 days after treatment. The fermented bacteria of Chenggukjang were well established in the cucumber leaf area at 15 days after treatment. The antifungal activity of 10% diluted cheonggukjang solutions was excellent for four species of plant fungal pathogens, Colletotrichum gloeosporioides, Sclerotinia cepivorum, Rhizoctonia sloani and Phytophthora capsici in the dual culture test. Results indicated that foliar application of Cheonggukjang solution could be used for the control of powdery mildews occurring on organically cultivated cucumber.

Comparison of Agronomic Characteristics, Forage Yield and Quality of Sorghum X sudangrass Hybrid (수수 X 수단그라스 교잡종의 생육특성, 사초 수량 및 품질 비교)

  • 김종덕;권찬호;김호중;박진길;이병생;빙기선;문승태
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • 제22권4호
    • /
    • pp.297-302
    • /
    • 2002
  • This study was carried out to compare the agronomic characteristics, forage yield, and quality of four sorghum $\times$ sudangrass hybrids at Yonam College of Agriculture Experimental Livestock Farm, Sunghwan in 2001. The four recommended hybrids used in this study were ‘SXl7’ and ‘877F’(heading type), and ‘TE Evergreen’ and ‘Turbo 9’(headless type). sugar content or heading hybrids(SX17 and 877F) were higher then that of headless hybrids(TE Evergreen and Turbo 9). SX17 had resistance to lodging, while all hybrids had resistance to foliar disease and insect. Dry matter(DM) and total digestible nutrients (TDN) yields of heading hybrids were higher then those of headless hybrids. Among sudangrass hybrids, DM and TDN yields of 877F were the highest(21,007 and 12,276kg/ha). The crude protein of Turbo 9(10.5%) was higher than other hybrids. Neutral detergent fiber(NDF) content of headless hybrids were higher than that of heading hybrids, while acid detergent fiber(ADF) and acid detergent lignin(ADL) contents of headless hybrids were lower than those of heading hybrids. Calculated TDN of headless hybrids were higher than that at heading hybrids. Cellulase digestible of organic matter of dry matter (CDOMD) of headless hybrids also were higher then that of heading hybrids. Results of this experiment indicates that heading hybrid was better than headless hybrid in the agronomic characteristics and forage yield of sorghum $\times$ sudangrass. However heading hybrid was lower than leafless hybrid in quality of sorghum $\times$ sudangrass.

Biological properties of $\beta$-ketoacetoanilide chlorides against late blight of tomato (베타-케토아세트아닐라이드 염화물 유도체의 토마토 역병에 대한 작용 특성)

  • Choi, Gyung-Ja;Jang, Kyoung-Soo;Kim, Jin-Cheol;Lee, Seon-Woo;Cho, Kwang-Yun;Nam, Kee-Dal;Hahn, Hoh-Gyu
    • The Korean Journal of Pesticide Science
    • /
    • 제8권2호
    • /
    • pp.137-144
    • /
    • 2004
  • [ $\beta$ ]-Ketoacetoanilide chloride derivatives containing a substituent at 4 in phenyl group (para) reduced specifically the development of tomato late blight caused by Phytophthora infestans. Among $\beta$ketoacetoanilide chloride derivatives, five (KIST163, KIST170, KIST260, KIST263, and KIST267) were selected and tested for their protective, curative, systemic, persistent activities, and disease control efficacy against tomato late blight on adult plants. They exhibited a strong l-day protective activity and $EC_{50}$ of KIST163 and KIST170 were 21.9 and $14.5{\mu}g/mL$, respectively. However, they had little curative and systemic activities. Good persistence of KIST163 and KIST170 on tomato plants were observed against P. infestans; both KIST163 and KIST170 at $100{\mu}g/mL$ showed control values more than 75% in a 7-day protective applications. In addition, the two chemicals effectively controlled the occurrence of P. infestans on adult tomato plants. These results indicate that five $\beta$-ketoacetoanilide chloride derivatives are foliar fungicides with a preventive action and KIST163 and KIST170 have a potential for the control of tomato late blight in the fields.

Reducing Phytotoxic by Adjusted pH and Control effect of Loess-Sulfur Complex as Organic Farming Material against Powdery Mildew in Tomato (유기농자재인 황토유황합제의 약해 경감 및 흰가루병 방제효과)

  • Shim, Chang-Ki;Kim, Min-Jeong;Kim, Yong-Ki;Hong, Sung-Jun;Kim, Suk-Chul
    • The Korean Journal of Pesticide Science
    • /
    • 제18권4호
    • /
    • pp.376-382
    • /
    • 2014
  • The soluble loess-sulfur mixture allowed standing to remove insoluble component materials for five weeks after manufacturing. We decreased the pH level of soluble loess-sulfur mixture at pH 1.0 modified with decreasing 25% sodium hydroxide than original content. The pH ranges of soluble loess-sulfur mixture solutions were adjusted to pH 5.0-pH 11.0 (pH 1 unit) with brown rice vinegar (pH 2.8). The pH of original loess-sulfur mixture was about pH 13 and damaged the foliar parts and young leaves of tomato after twice application. These stock solutions can be diluted 500:1 with tap water to make a 0.05% working solution and were sprayed two times with 7 days interval to the leaf and stem of tomato, which were spontaneously infected with E. cichoracearum. Control efficacy of powdery mildew ranged from 85% to 90% at 7 days after first application. After second application, each loess-sulfur mixture solutions adjusted pH level significantly suppressed the powdery mildew disease in tomato. Consequently, loess-sulfur complex adjusted pH level with brown rice vinegar was suggested to be low in acute toxicity at all different pH values and suggested to use an agent for control of tomato powdery mildew in organic farming.