• Title/Summary/Keyword: fluorinated

Search Result 315, Processing Time 0.027 seconds

Interpretation of Dispersion Phenomena in Grunwald-Winstein Correlation for Solvolyses of Naphthoyl Chloride

  • Ryu, Zoon-Ha;Ju, Chang-Suk;Sung, Dae-Dong;Sung, Nak-Chang;Bentley, T. William
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.1
    • /
    • pp.123-131
    • /
    • 2002
  • Solvolyses rate constant of 1- and 2- naphthoyl chlorides (1 and 2) are reported for aqueous binary mixtures with methanol, ethanol, fluorinated alcohol, acetonitrile and dioxane. Kinetic solvent isotope effects (KISE) in methanol and product selectivities (S) of 2-naphthoyl chloride (2) in alcohol-water are also reported. Dispersions in Grunwald-Winstein correlations $(r{\leq}0.901)$ are discussed by multiple regression analysis incorporating ionizing power $(Y_{Cl})$ scale and rate-rate profiles. Major causes for these phenomena are investigated as an aromatic ring solvation effects, in conjunction with weakly nucleophilic solvation effects ($S_N2$ character), for solvolyses of 1 and for solvolyses of 2, as dual reaction channels, described as $S_N1$-$S_N2$ and $S_AN$-$S_N2$ processes. Distinct border lines between the two pathways are derived from solvolyses rates of 2 in 18 solvent using the results of $log(k/k_o)=mY_{Cl}+lN_T+hI$ plot with values of 1.13 for m, 0.37 for l and 0.15 for h value in 5 aqueous fluorinated alcohol mixtures. Using rate-product correlation, the validity of a third order model based on a general base catalyzed by solvent and contribution from these rate constants, $k_{aa},\;k_{aw}$ and $k_{aw}$, are investigated for $S_AN$-$S_N2$ solvolyses of 2 favored in more rich alcohol media and gradual addition of water to alcohol solvent shows a great shift away from stoichiometric solvation to predominantly medium effects. Rate-rate correlation between solvolyses of 2 and trimethyl acetylchloride (5) with alkyl group in the 29 aqueous solvent mixtures shows appreciable linearity (slope = 0.84, r = 0.987), caused by the same pathway ($S_N1$-$S_N2$ process), even if this correlation coincides with appreciable dispersion (different solvation effect).

Highly Improved Electrical Properties of A1/CaF2/Diamond MISFET Fabricated by Ultrahigh Vacuum Process and Its Application to Inverter Circuit (초고진공 프로세스에 의해 제작된 A/CaF2/Diamond MISFET의 개선된 전기적 특성과 인버터회로에의 응용)

  • Yun, Young
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.5
    • /
    • pp.536-541
    • /
    • 2003
  • In order to avoid oxygen contamination on the diamond surface as far as possible during the device process, the A1/Ca $F_2$/diamond MISFET(metal-insulator-semiconductor field-effect transistor) was prepared by ultrahigh vacuum process and its electrical properties were investigated. The surface conductive layer of fluorinated diamond surface was employed for the conducting channel of the MISFET. The observed effective mobility(${\mu}$e$\_$ff/) of the MISFET was 300 c $m^2$/Vs, which is the highest value obtained until now in the diamond FET. Besides, the measured surface state density of the device was ∼10$\^$11//c $m^2$ eV, which is comparable with conventional Si MOSFET$\_$s/(metal-oxide-semiconductor field-effect-transistors). This work is the first report of the fluorinated diamond MISFET prepared by ultrahigh vacuum process and its application to inverter circuit.

The Effects of CF4 Partial Pressure on the Hydrophobic Thin Film Formation on Carbon Steel by Surface Treatment and Coating Method with Linear Microwave Ar/CH4/CF4 Plasma

  • Han, Moon-Ki;Cha, Ju-Hong;Lee, Ho-Jun;Chang, Cheol Jong;Jeon, Chang Yeop
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.5
    • /
    • pp.2007-2013
    • /
    • 2017
  • In order to give hydrophobic surface properties on carbon steel, the fluorinated amorphous carbon films were prepared by using linear 2.45GHz microwave PECVD device. Two different process approaches have been tested. One is direct deposition of a-C:H:F films using admixture of $Ar/CH_4/CF_4$ working gases and the other is surface treatment using $CF_4$ plasma after deposition of a-C:H film with $Ar/CH_4$ binary gas system. $Ar/CF_4$ plasma treated surface with high $CF_4$ gas ratio shows best hydrophobicity and durability of hydrophobicity. Nanometer scale surface roughness seems one of the most important factors for hydrophobicity within our experimental conditions. The properties of a-C:H:F films and $CF_4$ plasma treated a-C:H films were investigated in terms of surface roughness, hardness, microstructure, chemical bonding, atomic bonding structure between carbon and fluorine, adhesion and water contact angle by using atomic force microscopy (AFM), nano-indentation, Raman analysis and X-ray photoelectron spectroscopy (XPS).

Characteristics of sPAES Membrane and sPEEK Membrane for Direct Formic Acid Fuel Cell (직접개미산 연료전지용 전해질막으로서 sPAES 막과 sPEEK 막의 특성)

  • Jeong, Jae-Hyeon;Song, Myung-Hyun;Chung, Hoi-Bum;Lee, Moo-Seok;Lee, Dong-Hoon;Chu, Cheun-Ho;Na, Il-Chai;Park, Kwon-Pil
    • Korean Chemical Engineering Research
    • /
    • v.53 no.6
    • /
    • pp.690-694
    • /
    • 2015
  • Recently, direct formic acid fuel cells (DFAFC) among direct liquid fuel cells is studied actively. Economical hydrocarbon membranes alternative to fluorinated membranes for DFAFC's membrane are receiving attention. In this study, characteristics of sulfonated poly(ether ether ketone, sPEEK) and sulfonated poly(arylene ether sulfone, PAES) membranes were compared with Nafion membrane at DFAFC operation condition. Formic acid crossover current density of hydrocarbon membranes were lower than that of Nafion 211 fluorinated membrane. I-V performance of sPEEK MEA(Membrane and Electrode Assembly) was similar to that of Nafion 211 MEA due to similar membrane resistance each other. sPEEK MEA with low formic acid crossover showed higher stability compared with Nafion 211 MEA.

Preparation of Poly(vinylbenzyl chloride)-grafted Fluoropolymer Films by Using Radiation Grafting Method (방사선 그래프팅에 의한 염화비닐벤질 고분자가 그래프트된 불소필름의 제조)

  • Fei, Geng;Sohn, Joon-Yong;Lee, Youn-Sik;Nho, Young-Chang;Shin, Jun-Hwa
    • Polymer(Korea)
    • /
    • v.34 no.5
    • /
    • pp.464-468
    • /
    • 2010
  • In this study, a vinylbenzyl chloride (VBC) monomer was successfully grafted onto the several fluoropolymer films including poly(tetrafluoroethylene-co-hexafluoropropylene) (FEP), poly(tetrafluoroethylene-co-perfluoropropylvinyl ether) (PFA), and poly(ethylene-co-tetrafluoroethylene) (ETFE) films by using a simultaneous irradiation method. The results indicated that PVBC graft polymer can be easily grafted onto the ETFE film than other fluorinated films under the same irradiation condition. The grafted films were characterized by using FTIR, TGA, and SEM-EDS instruments. The elongation at the breaking of the grafted films was found to decrease with an increase of degree of grafting (DOG). The PVBC-grafted ETFE films were found to have better mechanical properties than other PVBC-grafted fluorinated films.

Studies on the Gas Permeation Behaviors Using the Surface Fluorinated Poly(phenylene oxide) Membranes (표면불소화에 따른 Poly(phenylene oxide)막의 기체투과거동 연구)

  • Lee, Bo-Sung;Kim, Dae-Hoon;Rhim, Ji-Won
    • Membrane Journal
    • /
    • v.20 no.2
    • /
    • pp.106-112
    • /
    • 2010
  • This study deals with the surface fluorination of poly(phenylene oxide) (PPO) with the direct contact of 100 ppm fluorine gas. To characterize the surface fluorinated membranes, the contac angle measurement, X-ray photoelectron microscopy analysis and the gas permeation experiments were performed. As the fluorination time increases, the hydrophobicity of membrane surfaces is increased by the surface characterization. In general, as expected, the overall gas permeability was reduced. Typically, the permeability reduction of 33% for nitrogen, 23% for oxygen and 3% for carbon dioxide were observed when the membranes were exposed in 100 ppm environment for 60 min., meanwhile the selectivity was increased from 3.92 to 4.47 for $O_2/N_2$ and 18.09 to 25.4 for $O_2/N_2$, respectively.

In vitro shear bond strength between fluorinated zirconia ceramic and resin cements

  • Tanis, Merve Cakirbay;Akay, Canan;Akcaboy, Turgut Cihan;Sen, Murat;Kavakli, Pinar Akkas;Sapmaz, Kadriye
    • The Journal of Advanced Prosthodontics
    • /
    • v.10 no.3
    • /
    • pp.205-210
    • /
    • 2018
  • PURPOSE. The purpose of this study was to evaluate the efficiency of a gas-phase fluorination method under different fluorination periods through using two resin cements. MATERIALS AND METHODS. 84 zirconia specimens in dimensions of $5mm{\times}5mm{\times}2mm$ were prepared and surface treated with $50{\mu}m$ aluminum oxide particles or gas phase fluorination for 2 min, 5 min, or 10 min. One specimen in each group was surface analyzed under scanning electron microscope. The remaining specimens were bonded to composite cylinders in dimensions of 2 mm diameter and 3 mm high with Panavia SA Plus or Variolink N. Then, the specimens were stored in $37^{\circ}C$ distilled water for 24 hours and shear bond strength test was applied at a speed of 1 mm/min. RESULTS. The highest shear bond strength values were observed in the samples fluorinated for 5 minutes and cemented with Panavia SA Plus. Variolink N did not elicit any statistical differences between surface treatments. Panavia SA Plus resin cement and Variolink N resin cements featured statistically significant difference in shear bond strength values only in the case of 5 minutes of fluorination treatment. CONCLUSION. According to the results of this study, application of 5 minutes of fluorination with 10-methacryloyloxydecyl dihydrogen phosphate monomer (MDP) containing Panavia SA Plus resin cement increased the resin bond strength of zirconia. Fluorination of the zirconia surface using conventional resin cement, Variolink N, did not lead to an increase in bond strength.

Mechanical and Thermal Properties of Epoxy Composites Reinforced Fluorinated Illite and Carbon Nanotube (불소화 일라이트 및 탄소나노튜브 강화 에폭시 복합재의 기계적 및 열적 특성)

  • Lee, Kyeong Min;Lee, Si-Eun;Kim, Min Il;Kim, Hyeong Gi;Lee, Young-Seak
    • Applied Chemistry for Engineering
    • /
    • v.27 no.3
    • /
    • pp.285-290
    • /
    • 2016
  • To improve properties of epoxy composites, surfaces of the illite and carbon nanotube (CNT) were treated by fluorine gas. The fluorinated illite and CNT were then characterized by X-ray photoelectron microscopy (XPS) and the mechanical and thermal properties of their composites were evaluated. The tensile and impact strengths and thermal stability of the composites increased upto about 59%, 18% and 124%, respectively compared to those of the neat epoxy. Improvements of mechanical and thermal properties in the composites were attributed that the fluorination of illite and carbon nanotube helps to enhance the dispersion in epoxy resin and interfacial interaction between them.

Synthesis and Surface Properties of Fluorinated Polyurethanes (불소화된 폴리우레탄의 합성과 표면특성)

  • Kim, Hyung-Joong
    • Polymer(Korea)
    • /
    • v.25 no.1
    • /
    • pp.33-40
    • /
    • 2001
  • Fluorinated polyurethane elastomers were synthesized by two step polyaddition of a perfluorinated polyether diol(trade name of Fomblin $ZDOL^{\circledR}$) and diisocyanates such as 4,4'-diphenyl methane diisocyanate(MDI) and toluene 2,4-diisocyanate(TDI). In order to control the Fomblin moiety of the soft segment in the synthesized elastomers to 10~50%, polyether type polyols such as polypropylene glycol(PPG) and polytetramethylene glycol(PTMG) were mixed during the polymerization reaction. Ethylene diamine or 1,4-butane diol was used as chain extenders. The structure and average molecular weight of the produced polyurethanes were confirmed by using FT-IR, $^1H-NMR$, DSC, and GPC. The surface properties were analyzed by using X-ray photoelectron spectroscopy(XPS) and contact angle meter. From the results of the surface analysis it was concluded that the fluorine groups were localized on the surface rather than the inside of the polyurethane films.

  • PDF

Characteristics of Poly(arylene ether sulfone) Membrane for Vanadium Redox Flow Battery (바나듐 레독스 흐름전지용 Poly(arylene ether sulfone) 막의 특성)

  • Oh, Sung-June;Jeong, Jae-Hyeon;Shin, Yong-Cheol;Lee, Moo-Seok;Lee, Dong-Hoon;Chu, Cheun-Ho;Kim, Young-Sook;Park, Kwon-Pil
    • Korean Chemical Engineering Research
    • /
    • v.51 no.6
    • /
    • pp.671-676
    • /
    • 2013
  • Recently, there are many efforts focused on development of Redox Flow Battery (RFB) for large energy storage system. Economical hydrocarbon membranes alternative to fluorinated membranes for RFB membrane are receiving attention. In this study, characteristics of poly(arylene ether sulfone) (PAES) were compared with expensive fluorinated membrane at VRB (Vanadium Redox Flow Battery) operation condition. Permeability of vanadium ion through membrane, ion exchange capacity (IEC), change of OCV, swelling, charge-discharge curves and energy efficiency were measured. PAES membrane showed lower permeability of vanadium ion, higher IEC and then higher energy efficiency compared with Nafion 117 membranes.