DOI QR코드

DOI QR Code

Mechanical and Thermal Properties of Epoxy Composites Reinforced Fluorinated Illite and Carbon Nanotube

불소화 일라이트 및 탄소나노튜브 강화 에폭시 복합재의 기계적 및 열적 특성

  • Lee, Kyeong Min (Dept. of Chemical Eng. And Applied Chemistry, Chungnam National University) ;
  • Lee, Si-Eun (Dept. of Chemical Eng. And Applied Chemistry, Chungnam National University) ;
  • Kim, Min Il (Dept. of Chemical Eng. And Applied Chemistry, Chungnam National University) ;
  • Kim, Hyeong Gi (Korea Fire Safety Association) ;
  • Lee, Young-Seak (Dept. of Chemical Eng. And Applied Chemistry, Chungnam National University)
  • 이경민 (충남대학교 응용화학공학과) ;
  • 이시은 (충남대학교 응용화학공학과) ;
  • 김민일 (충남대학교 응용화학공학과) ;
  • 김형기 (한국소방안전협회) ;
  • 이영석 (충남대학교 응용화학공학과)
  • Received : 2016.04.06
  • Accepted : 2016.04.17
  • Published : 2016.06.10

Abstract

To improve properties of epoxy composites, surfaces of the illite and carbon nanotube (CNT) were treated by fluorine gas. The fluorinated illite and CNT were then characterized by X-ray photoelectron microscopy (XPS) and the mechanical and thermal properties of their composites were evaluated. The tensile and impact strengths and thermal stability of the composites increased upto about 59%, 18% and 124%, respectively compared to those of the neat epoxy. Improvements of mechanical and thermal properties in the composites were attributed that the fluorination of illite and carbon nanotube helps to enhance the dispersion in epoxy resin and interfacial interaction between them.

에폭시 복합재의 물성을 향상시키기 위하여, 일라이트 및 탄소나노튜브가 불소 가스로 표면처리 되었다. 불소화 처리된 일라이트 및 탄소나노튜브는 엑스선 광전자 분광기를 이용하여 분석하였고, 그 복합재의 기계적 및 열적 특성을 평가하였다. 이 에폭시 복합재는 미첨가 에폭시 복합재와 비교하여 인장강도는 약 59%, 충격강도는 18%, 열안정성은 124%로 크게 향상됨을 확인하였다. 에폭시 복합재의 기계적 및 열적 특성의 향상은 일라이트 및 탄소나노튜브의 불소화가 에폭시 내에서 분산성을 향상시키고 에폭시 수지와의 계면 결합력을 증가시켰기 때문이다.

Keywords

References

  1. R. Das, S. L. Banerjee, R. Kumar, and P. P. Kundu, Development of sustainable elastomeric engineering nanocomposites from linseed oil with improved mechanical stability and thermally induced shape memory properties, J. Ind. Eng. Chem., 35, 388-399 (2016). https://doi.org/10.1016/j.jiec.2016.01.021
  2. M. O. Ansan, S. P. Ansan, S. K. Yadav, T. Anwer, M. H. Cho, and F. Mohammad, Ammonia vapor sensing and electrical properties of fibrous multi-walled carbon nanotube/polyaniline nanocomposites prepared in presence of cetyl-trimethylammonium bromide, J. Ind. Eng. Chem., 20, 2010-2017 (2014). https://doi.org/10.1016/j.jiec.2013.09.024
  3. F. Gardea and D. C. Lagoudas, Characterization of electrical and thermal properties of carbon nanotube/epoxy composites, Composites Part B, 56, 611-620 (2014). https://doi.org/10.1016/j.compositesb.2013.08.032
  4. T. Giang and J. Kim, Effect of backbone moiety in diglycidylether-terminated liquid crystalline epoxy on thermal conductivity of epoxy/alumina composite, J. Ind. Eng. Chem., 30, 77-84 (2015). https://doi.org/10.1016/j.jiec.2015.05.004
  5. B. G. Son, T. S. Hwang, and D. C. Goo, Fire-retardation properties of polyurethane nanocomposite by filling inorganic nano flame retardant, Polym. Korea, 31, 404-409 (2007).
  6. J. Bujdak, E. Hackett, and E. P. Giannelis, Effect of layer charge on the intercalation of poly(ethylene oxide) in layered silicates: Implications on nanocomposite polymer electrolytes, Chem. Mater., 12, 2168-2174 (2000). https://doi.org/10.1021/cm990677p
  7. S. J. Park, D. I. Seo, and C. Nah, Effect of acidic surface treatment of red mud on mechanical interfacial properties of epoxy/red mud nanocomposites, J. Colloid Interface Sci., 251, 225-229 (2002). https://doi.org/10.1006/jcis.2002.8336
  8. X. Zhao, J. Li, Y. Zhang, H. Dong, J. Qu, and Tao Qi, Preparation of nanosized anatase TiO2-coated illite composite pigments by $Ti(SO_{4})_{2}$ hydrolysis, Powder Technol., 271, 262-269 (2015). https://doi.org/10.1016/j.powtec.2014.10.021
  9. E. Jeong, J. W. Lim, K. W. Seo, and Y. S. Lee, Effects of physicochemical treatments of illite on the thermo-mechanical properties and thermal stability of illite/epoxy composites, J. Ind. Eng. Chem., 17, 77-82 (2011). https://doi.org/10.1016/j.jiec.2010.10.012
  10. J. H. Kim, T. D. Dao, and H. M. Jeong, Aluminum hydroxide-CNT hybrid material for synergizing the thermal conductivity of alumina sphere/thermoplastic polyurethane composite with minimal increase of electrical conductivity, J. Ind. Eng. Chem., 33, 150-155 (2016). https://doi.org/10.1016/j.jiec.2015.09.025
  11. M. Y. Koo, H. C. Shin, W. S. Kim, and G. W. Lee, Properties of multi-walled carbon nanotube reinforced epoxy composites fabricated by using sonication and shear mixing, Carbon Lett., 15, 255-261 (2014). https://doi.org/10.5714/CL.2014.15.4.255
  12. W. S. Tung, V. Bird, R. J. Composto, N. Clarke, and K. I. Winey, Polymer chain conformations in CNT/PS nanocomposites from small angle neutron scattering, Macromolecules, 46, 5345-5354 (2013). https://doi.org/10.1021/ma400765v
  13. G. Mittal, V. Dhand, K. Y. Rhee, S. J. Park, and W. R. Lee, A review on carbon nanotubes and graphene as fillers in reinforced polymer nanocomposites, J. Ind. Eng. Chem., 21, 11-25 (2015). https://doi.org/10.1016/j.jiec.2014.03.022
  14. H. Maka, T. Spychaj, and M. Zenker, High performance epoxy composites cured with ionic liquids, J. Ind. Eng. Chem., 31, 192-198 (2015). https://doi.org/10.1016/j.jiec.2015.06.023
  15. S. H. Park and J. Bae, Tailoring environment friendly carbonnanostructures by surfactant mediated interfacial engineering, J. Ind. Eng. Chem., 30, 1-9 (2015). https://doi.org/10.1016/j.jiec.2015.05.005
  16. K. Yang, X. Huang, Y. Huang, L. Xie, and P. Jiang, Fluoro-@$PolymerBaTiO_{3}$ hybrid nanoparticles prepared via RAFT polymerization: toward ferroelectric polymer nanocomposites with high dielectric constant and low dielectric loss for energy storage application, Chem. Mater., 25, 2327-2338 (2013). https://doi.org/10.1021/cm4010486
  17. Y. Ganesan, H. Salahshoor, C. Peng, V. Khabashesku, J. Zhang, A. Care, N. Rahbar, and J. Lou, Fracture toughness of the sidewall fluorinated carbon nanotube-epoxy interface, J. Appl. Phys., 115, 224-305 (2014).
  18. E. Jeong and Y. S. Lee, Fluoro-illite/polypropylene composite fiber formation and their thermal and mechanical properties, Appl. Chem. Eng., 22, 467-472 (2011).
  19. M. J. Jung, E. Jeong, and Y. S. Lee, The surface chemical properties of multi-walled carbon nanotubes modified by thermal fluorination for electric double-layer capacitor, Appl. Surf. Sci., 347, 250-257 (2015). https://doi.org/10.1016/j.apsusc.2015.04.038
  20. M. J. Kim, M. J. Jung, S. S. Choi, and Y. S. Lee, Adsorption characteristics of toluene gas using fluorinated phenol-based activated carbons, Appl. Chem. Eng., 26, 587-592 (2015). https://doi.org/10.14478/ace.2015.1083
  21. M. J. Kim, M. J. Jung, S. S. Choi, and Y. S. Lee, Effects of the fluorination of activated carbons on the chromium ion adsorption, Appl. Chem. Eng., 26, 92-98 (2015). https://doi.org/10.14478/ace.2014.1126
  22. O. K. Park, T. Jeevananda, N. H. Kim, S. I. Kim, and J. H. Lee, Effects of surface modification on the dispersion and electrical conductivity of carbon nanotube/polyaniline composites, Scripta Mater., 60, 551-554 (2009). https://doi.org/10.1016/j.scriptamat.2008.12.005
  23. Y. Hattori, N. Noguchi, F. Okino, H. Touhara, Y. Nakahigashi, S. Utsumi, H. Tanaka, H. Kanoh, and K. Kaneko, Defluorination-enhanced hydrogen adsorptivity of activated carbon fibers, Carbon, 45, 1391-1395 (2007). https://doi.org/10.1016/j.carbon.2007.03.036
  24. S. G. Lee, J. C. Won, J. H. Lee, and K. Y. Choi, Flame retardancy of polypropylene/montmorillonite nanocomposites, Polym. Korea, 29, 248-252 (2005).
  25. H. R. Yu, E. Jeong, J. Kim, and Y. S. Lee, Influence of fluoro-illite on flame retardant property of epoxy complex, Polym. Korea, 35, 47-51 (2011). https://doi.org/10.7317/pk.2011.35.1.47
  26. J. S. Im, S. K. Lee, S. J. In, and Y. S. Lee, Improved flame retardant properties of epoxy resin by fluorinated MMT/MWCNT additives, J. Anal. Appl. Pyrolysis, 89, 225-232 (2010). https://doi.org/10.1016/j.jaap.2010.08.003
  27. C. D. Doyle, Estimating thermal stability of experimental polymers by empirical thermogravimetric analysis, Anal. Chem., 33, 77-79 (1961). https://doi.org/10.1021/ac60169a022
  28. S. H. Park, S. G. Lee, and S. H. Kim, Thermal decomposition behavior of carbon nanotube reinforced thermotropic liquid crystalline polymers, J. Appl. Polym. Sci., 122, 2060-2070 (2011). https://doi.org/10.1002/app.34200
  29. S. E. Lee, S. Cho, and Y. S. Lee, Mechanical and thermal properties of MWCNT-reinforced epoxy nanocomposites by vacuum assisted resin transfer molding, Carbon Lett., 15, 32-37 (2014). https://doi.org/10.5714/CL.2014.15.1.032
  30. G. Mittal, V. Dhand, K. Y. Rhee, H. J. Kim, and D. H. Jung, Carbon nanotubes synthesis using diffusion and premixed flame methods: a review, Carbon Lett., 16, 1-10 (2015). https://doi.org/10.5714/CL.2015.16.1.001
  31. J. Y. Kim and S. H. Kim, Influence of multiwall carbon nanotube on physical properties of poly(ethylene 2,6-naphthalate) nanocomposites, J. Polym. Sci., Part B: Polym. Phys., 44, 1062-1071 (2006). https://doi.org/10.1002/polb.20728
  32. P. C. Ma, J. K. Kim, and B. Z. Tang, Effects of silane functionalization on the properties of cargon nanotube/epoxy nanocomposites, Compos. Sci. Technol., 67, 2965-2972 (2007). https://doi.org/10.1016/j.compscitech.2007.05.006

Cited by

  1. Effects of Increase in Ratio of Phenolic Hydroxyl Function on Carbon Fiber Surfaces by Anodic Oxidation on Mechanical Interfacial Bonding of Carbon Fibers-reinforced Epoxy Matrix Composites vol.27, pp.5, 2016, https://doi.org/10.14478/ace.2016.1054