DOI QR코드

DOI QR Code

Characteristics of sPAES Membrane and sPEEK Membrane for Direct Formic Acid Fuel Cell

직접개미산 연료전지용 전해질막으로서 sPAES 막과 sPEEK 막의 특성

  • Received : 2015.03.03
  • Accepted : 2015.04.17
  • Published : 2015.12.01

Abstract

Recently, direct formic acid fuel cells (DFAFC) among direct liquid fuel cells is studied actively. Economical hydrocarbon membranes alternative to fluorinated membranes for DFAFC's membrane are receiving attention. In this study, characteristics of sulfonated poly(ether ether ketone, sPEEK) and sulfonated poly(arylene ether sulfone, PAES) membranes were compared with Nafion membrane at DFAFC operation condition. Formic acid crossover current density of hydrocarbon membranes were lower than that of Nafion 211 fluorinated membrane. I-V performance of sPEEK MEA(Membrane and Electrode Assembly) was similar to that of Nafion 211 MEA due to similar membrane resistance each other. sPEEK MEA with low formic acid crossover showed higher stability compared with Nafion 211 MEA.

최근에 직접 액체 연료전지 중에서 직접 개미산 연료전지(Direct Formic Acid Fuel Cells, DFAFC)가 활발히 연구되고 있다. 불소계막을 대신할 저가의 탄화수소막이 DFAFC막으로 주목받고 있다. 본 연구에서는 sulfonated poly(ether ether ketone ketone, sPEEK)막과 Poly(arylene ether sulfone)(PAES)막을 사용해 Nafion 막과 그 특성을 DFAFC 조건에서 비교하였다. 탄화수소계막의 개미산 투과 전류밀도가 $240{\sim}250mA/cm^2$로 불소계인 Nafion 211 막의 $600mA/cm^2$보다 낮았다. sPEEK MEA(Membrane and Electrode Assembly)와 Nafion 211 MEA의 막 저항이 서로 비슷해 I-V 성능도 거의 같았다. 개미산 투과도가 낮은 sPEEK MEA가 Nafion 211 MEA보다 안정함을 보였다.

Keywords

References

  1. Scott, K., Taama, W. and Cruickshank, J., "Performance of a Direct Methanol Fuel Cell," J. Appl. Electrochem., 28(3), 289-297(1998). https://doi.org/10.1023/A:1003263632683
  2. Cruickshank, J. and Scott, K., "The Degree and Effect of Methanol Crossover in the Direct Methanol Fuel Cell," J. Power Sources, 70(1), 40-47(1992). https://doi.org/10.1016/S0378-7753(97)02626-8
  3. Rice, C., Masel, R. I., Waszczuk, P., Wieckowski, A. and Barnard, T., "Direct Formic Acid Fuel Cells," J. Power Sources, 111(1), 83-89(2002). https://doi.org/10.1016/S0378-7753(02)00271-9
  4. Rhee, Y. W., Ha, S. Y. and Masel, R. I., "Crossover of Formic Acid Through Nafion Membranes," J. Power Sources, 117(1-2), 35-38(2003). https://doi.org/10.1016/S0378-7753(03)00352-5
  5. Thomas, F. S., Lu, C., I. Lee, N. Chen, R. I. and Masel, C. L., "Evidence for a Cation Intermediate During Methanol Dehydration on Pt(110)," Catal. Lett., 72, 167-175(2001). https://doi.org/10.1023/A:1009054006372
  6. Blowers, P. and Chen, N., "Formation of Hydronium and Methoxonium on Pt(110)," J. Vac. Sci. Tech. A, 17, 1750-1755(1999).
  7. Lu, C., Thomas, F. S. and Masel, R. I., "Chemistry of Methoxonium on (2x1)Pt(110)," J. Phys. Chem. B, 105, 8583-8590(2001). https://doi.org/10.1021/jp011184m
  8. Kim, J. S., Yu, J. K., Lee, H. S. and Kim, J. Y., "Effect of Temperature, Oxidant and Catalyst Loading on the performance of Direct Formic Acid Fuel Cell," Korean J. Chem. Eng., 22(5), 661-665(2005). https://doi.org/10.1007/BF02705779
  9. Song, J., Kim, S., Ahn, B., Ko, J. and Park, K., "Effect of Electrode Degradation on the Membrane Degradation in PEMFC," Korean Chem. Eng. Res. 51, 68-72(2013). https://doi.org/10.9713/kcer.2013.51.1.68
  10. Jeong, J., Shin, Y., Lee, M., Lee, D., Na, I., Lee, H. and Park, K., "Characteristics of Poly(arylene ether sulfone) Membrane for Proton Exchange Membrane Fuel Cells," Korean Chem. Eng. Res. 51, 556-560(2013). https://doi.org/10.9713/kcer.2013.51.5.556
  11. Lee, H., Kim, T. H., Sim, W. J., Kim, S. H., Ahn, B. K., Lim, T. W. and Park, K. P., "Pinhole Formation in PEMFC Membrane After Electrochemical Degradation and Wet/dry Cycling Test," Korean J. Chem. Eng., 28, 487-491(2011). https://doi.org/10.1007/s11814-010-0381-6