• Title/Summary/Keyword: sPEEK

Search Result 71, Processing Time 0.03 seconds

Preparation and Characterization of Ion-exchange Membrane Using sPEEK for Fuel Cell Application (Sulfonated-PEEK를 이용한 연료전지용 이온교환막의 제조 및 특성평가)

  • Jang, Won-Gi;Ye, Se-Hui;Kang, Seung-Kyu;Kim, Ji-Tae;Byun, Hong-Sik
    • Membrane Journal
    • /
    • v.21 no.3
    • /
    • pp.270-276
    • /
    • 2011
  • A nascent membrane was prepared by using the solution evaporation method with a solution of sPEEK, EdAn (cross-linking reagent), and PEA (grafting reagent) in DMAc. Then, after the imination and sulfonation process the cross-linked and grafted ion-exchange membrane, CG-sPEEK, was obtained. The sulfonation and imination reactions were confirmed by FTIR analysis. In order to evaluate the possibility of prepared membrane for the use of an ion-exchange membrane in PEMFC, proton conductivity, water uptake and volume change were measured and compared with a commercial membrane, Nafion 115. It was revealed that since the proton conductivity (0.17 S/cm) of prepared membrane were much higher than those of Nafion 115 (0.10 S/cm) the prepared membrane could be used for the ion-exchange membrane in PEMFC. However, the high water uptake (130%) of CG-sPEEK should be reduced for the dimension stability.

A Study on the Properties of sPEEK Electrolytic Membranes using Physical Crosslinking (물리적 가교결합을 이용한 sPEEK 전해질막의 특성에 관한 연구)

  • Oh, Sae-Joong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.1
    • /
    • pp.433-440
    • /
    • 2016
  • Composite membranes were prepared by the solution casting method from sulfonated poly(etheretherketone)(sPEEK) and imidazole and phosphotungstic acid(PWA) to enhance the electrolytic properties of the membrane. TGA measurements showed that physical crosslinking due to acid-base interactions improved the thermal resistance to the desulfonation of sulfonic acid groups of the composite membrane and the addition of PWA enhanced the resistance to thermal decomposition of the composite membrane. The acid-base interaction decreased the water uptake, proton conductivity and methanol permeability of the sPEEK/imidazole composite membranes. The addition of PWA increased the proton conductivities while it decreased the water uptake and methanol permeability of sPEEK/imidazole/PWA composite membranes. Therefore, the selectivity of the composite membranes was enhanced by the addition of PWA.

Characteristics of sPAES Membrane and sPEEK Membrane for Direct Formic Acid Fuel Cell (직접개미산 연료전지용 전해질막으로서 sPAES 막과 sPEEK 막의 특성)

  • Jeong, Jae-Hyeon;Song, Myung-Hyun;Chung, Hoi-Bum;Lee, Moo-Seok;Lee, Dong-Hoon;Chu, Cheun-Ho;Na, Il-Chai;Park, Kwon-Pil
    • Korean Chemical Engineering Research
    • /
    • v.53 no.6
    • /
    • pp.690-694
    • /
    • 2015
  • Recently, direct formic acid fuel cells (DFAFC) among direct liquid fuel cells is studied actively. Economical hydrocarbon membranes alternative to fluorinated membranes for DFAFC's membrane are receiving attention. In this study, characteristics of sulfonated poly(ether ether ketone, sPEEK) and sulfonated poly(arylene ether sulfone, PAES) membranes were compared with Nafion membrane at DFAFC operation condition. Formic acid crossover current density of hydrocarbon membranes were lower than that of Nafion 211 fluorinated membrane. I-V performance of sPEEK MEA(Membrane and Electrode Assembly) was similar to that of Nafion 211 MEA due to similar membrane resistance each other. sPEEK MEA with low formic acid crossover showed higher stability compared with Nafion 211 MEA.

Compatibility Studies of Blends of Engineering polymers and Thermotropic Liquid Crystalline Polymers (엔지니어링 고분자와 열방성 액정고분자 블렌드의 상용성에 관한연구)

  • 전용성
    • The Korean Journal of Rheology
    • /
    • v.9 no.2
    • /
    • pp.53-59
    • /
    • 1997
  • 열방성 액정고분자(LCP)와 polycarbonate(PC) poly(ether imide) (PEI) poly(PEEK), polysulfone(PSF), 그리고 polyarylsulfone(PAS)과의 블렌드에 대한 상용성을 연구하였다. 제조된 블렌드의 상거동에서 액정고분자가 PC-, PEI-, PEEK-, PSF-, 그리고 PAS-rich 상 에 녹아 들어가는 양이 PC, PEI, PEEK, PSF, 그리고 PAS가 액정 고분자 -rich상에 녹아들 어가는 양보다 많음을 알수 있었다. 측정된 블렌드의 유리전이온도 결과로부터 PC, PEI, PEEK와 액정고분자 사이의 상용성이 PSF, PAS와 액정 고분자 사이의 상용성에 비하여 더 좋음을 알수 있었다. 액정 고분자의 이방성을 고려하여 고분자-고분자 상호작용계수($\chi$12)를 결정하였으며, PC, PEI, PEEK, PSF, 그리고 PAS를 포함한 액정 고분자 블렌드에서 $\chi$12는 0.078-0.183으로 나타났다.

  • PDF

Performance of Direct Methanol Fuel Cell (DMFC) based on New Electrode Binder (sPEEK/Nafion): Effect of Binder Content (새로운 전극 바인더(sPEEK/Nafion)를 도입한 직접 메탄올 연료전지의 성능 : 바인더 함량의 영향)

  • Jung, Ho-Young;Park, Jung-Ki
    • Korean Chemical Engineering Research
    • /
    • v.45 no.4
    • /
    • pp.391-395
    • /
    • 2007
  • A new electrode binder mixed with sulfonated poly (ether ether ketone) (sPEEK) and Nafion is prepared and investigated as an anode binder for direct methanol fuel cell (DMFC). The mixed binder (95 wt% sPEEK/5 wt% Nafion) shows high proton conductivity and methanol transport rate as well as no dissolution and brittleness. The effect of content as an anode binder on the performance of the cell with the given cathode is investigated. The unit cell with the anode containing 10wt% mixed binder showed the highest cell performance.

Characteristics of Proton Exchange Membrane Fuel Cells(PEMFC) Membrane and Electrode Assembly(MEA) Using Sulfonated Poly(ether ether ketone) Membrane (sPEEK 막으로 제조한 고분자전해질 연료전지(PEMFC) 막전극합체(MEA)의 특성)

  • Lee, Hye-Ri;Lee, Se-Hoon;Hwang, Byung-Chan;Na, Il-Chai;Lee, Jung-Hun;Oh, Sung-June;Park, Kwon-Pil
    • Korean Chemical Engineering Research
    • /
    • v.54 no.2
    • /
    • pp.181-186
    • /
    • 2016
  • Recently, there are many efforts focused on development of more economical non-fluorinated membranes for use in PEMFCs (Proton Exchange Membrane Fuel Cells). In this study, characteristics of sulfonated Poly(ether ether ketone) (sPEEK) were compared according to degrees of sulfonation (DS), relative humidity, cell temperatures at PEMFC operation condition. I-V polarization curve, hydrogen crossover, electrochemical surface area, membrane resistance and charge transfer resistance were measured. sPEEK membrane showed high performance at high DS, high temperature and high relative humidity, in particular, performance of sPEEK membrane decreased largely due to low ionic conductivity at low DS and low relative humidity.

Active Material Crossover through Sulfonated Poly (Ether Ether Ketone) Membrane in Iron-Chrome Redox Flow Battery (철-크롬 산화환원흐름전지에서 Sulfonated Poly (Ether Ether Ketone)막의 활물질 Crossover)

  • Kim, Young-Sook;Oh, So-Hyeong;Kim, You-Jeong;Kim, Seong-ji;Chu, Cheun-Ho;Park, Kwonpil
    • Korean Chemical Engineering Research
    • /
    • v.57 no.1
    • /
    • pp.17-21
    • /
    • 2019
  • The redox flow battery (RFB) is a large-capacity energy storage equipment, and the vanadium redox flow cell is a typical RFB, but VRFB is expensive. Iron-chrome RFBs are economical because they use low-cost active materials, but their low performance is an urgent problem. One of the reasons for the low performance is the crossover of the active materials. In this study, the sulfonated Poly (ether ether ketone) (sPEEK) membrane, which is a hydrocarbon membrane, was used instead of the fluorine membrane to reduce the crossover of the active materials. The chromium ion permeability of the sPEEK membrane was $1.8{\times}10^{-6}cm^2/min$, which was about 1/33 of that of the Nafion membrane. Thus, it was shown that the use of the sPEEK membrane instead of the fluorine membrane could solve the high active material crossover problem. The activation energy of iron diffusion through the sPEEK membrane was 24.9 kJ/mol, which was about 66% of Nafion membrane. And that the e-PTFE support in the polymer membrane reduces the active material crossover through Iron-Chrome Redox Flow Battery (ICRFB).

Study on the Degradation of MEA Using Sulfonated Poly(ether ether ketone) Membrane in Proton Exchange Membrane Fuel Cells (고분자 전해질 연료전지에서 sPEEK 막을 이용한 전극과 막 합체(MEA)의 열화에 관한 연구)

  • Lee, Hye-Ri;Lee, Se-Hoon;Hwang, Byung-Chan;Na, Il-Chai;Lee, Jung-Hun;Oh, Sung-June;Park, Kwon-Pil
    • Korean Chemical Engineering Research
    • /
    • v.54 no.3
    • /
    • pp.305-309
    • /
    • 2016
  • Recently, there are many efforts focused on development of more economical non-fluorinated membranes for PEMFCs (Proton Exchange Membrane Fuel Cells). In this study, to test the durability of sPEEK MEA (Membrane and Electrode Assembly), ADT (Accelerated Degradation Test) of MEA degradation was done at the condition that membrane and electrode were degraded simultaneously. Before and after degradation, I-V polarization curve, hydrogen crossover, electrochemical surface area, membrane resistance and charge transfer resistance were measured. Although the permeability of hydrogen through sPEEK membrane was low, sPEEK membrane was weaker to radical evolved at low humidity and OCV condition than fluorinated membrane such as Nafion. Performance after MEA degradation for 144 hours and 271 hours were reduced by 15% and 65%, respectively. It was showed that the main cause of rapid decrease of performance after 144 hours was shorting due to Pt/C particles in the pinholes.