• Title/Summary/Keyword: fluid flow velocity

Search Result 1,740, Processing Time 0.024 seconds

Numerical simulations of fluid mechanical interactions between two abdominal aortic branches

  • Kim, Taedong;Taewon Seo;Abdul.I. Barakat
    • Korea-Australia Rheology Journal
    • /
    • v.16 no.2
    • /
    • pp.75-83
    • /
    • 2004
  • The purpose of the present study is to investigate fluid mechanical interactions between two major abdominal aortic branches under both steady and pulsatile flow conditions. Two model branching systems are considered: two branches emerging off the same side of the aorta (model 1) and two branches emerging off the opposite sides of the aorta (model 2). At higher Reynolds numbers, the velocity profiles within the branches in model 1 are M-shaped due to the strong skewness, while the loss of momentum in model 2 due to turning effects at the first branch leads to the absence of a reversed flow region at the entrance of the second branch. The wall shear stresses are considerably higher along the anterior wall of the abdominal aorta than along the posterior wall, opposite the celiac-superior mesenteric arteries. The wall shear stresses are higher in the immediate vicinity of the daughter branches. The peak wall shear stress in model 2 is considerably lower than that in the model 1. Although quantitative comparisons of our results with the physiological data have not been possible, our results provide useful information for the localization of early atherosclerotic lesions.

Direct simulations on 2D mold-filling processes of particle-filled fluids

  • Hwang, Wook-Ryol;Kim, Worl-Yong;Kang, Shin-Hyun;Kim, See-Jo
    • Korea-Australia Rheology Journal
    • /
    • v.21 no.3
    • /
    • pp.193-200
    • /
    • 2009
  • We present a direct simulation technique for two-dimensional mold-filling simulations of fluids filled with a large number of circular disk-like rigid particles. It is a direct simulation in that the hydrodynamic interaction between particles and fluid is fully considered. We employ a pseudo-concentration method for the evolution of the flow front and the DLM (distributed Lagrangian multipliers)-like fictitious domain method for the implicit treatment of the hydrodynamic interaction. Both methods allow the use of a fixed regular discretization during the entire computation. The discontinuous Galerkin method has been used to solve the concentration evolution equation and the rigid-ring description has been introduced for freely suspended particles. A buffer zone, the gate region of a finite area subject to the uniform velocity profile, has been introduced to put discrete particles into the computational domain avoiding any artificial discontinuity. From example problems of 450 particles, we investigated the particle motion and effects of particles on the flow for both Newtonian and shear-thinning fluid media. We report the prolonged particle movement toward the wall in case of a shear-thinning fluid, which has been interpreted with the shear rate distribution.

Development of the intermittency turbulence model for a plane jet flow (자유 평면 제트유동 해석을 위한 간혈도 난류모델의 개발)

  • 조지룡;정명균
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.3
    • /
    • pp.528-536
    • /
    • 1987
  • In a turbulent free shear flow, the large scale motion is characterized by the intermittent flow which arises from the interaction between the turbulent fluid and the irrotational fluid of the environment through the mean velocity gradient. This large scale motion causes a bulk convection whose effect is similar to the spatial diffusion process. In this paper, the total diffusion process is proposed to be approximated by weighted sum of the bulk convection due to the large scale motion and the usual gradient diffusion due to small scale motion. The diffusion term in conventional .kappa.-.epsilon. model requires on more equation of the intermittency transport equation. A production term of this equation means mass entrainment from the irrotational fluid to the turbulent one. In order to test the validity of the proposed model, a plane jet is predicted by this method. Numerical results of this model is found to yield better agreement with experiment than the standard .kappa.-.epsilon. model and Byggstoyl & Kollmann's model(1986). Present hybrid diffusion model requires further tests for the check of universality of model and for the model constant fix.

Numerical investigation of the influence of structures in bogie area on the wake of a high-speed train

  • Wang, Dongwei;Chen, Chunjun;He, Zhiying
    • Wind and Structures
    • /
    • v.34 no.5
    • /
    • pp.451-467
    • /
    • 2022
  • The flow around a high-speed train with three underbody structures in the bogie area is numerically investigated using the improved delayed detached eddy simulation method. The vortex structure, pressure distribution, flow field structure, and unsteady velocity of the wake are analyzed by vortex identification criteria Q, frequency spectral analysis, empirical mode decomposition (EMD), and Hilbert spectral analysis. The results show that the structures of the bogie and its installation cabin reduce the momentum of fluid near the tail car, thus it is easy to induce flow separation and make the fluid no longer adhere to the side surface of the train, then forming vortices. Under the action of the vortices on the side of the tail car, the wake vortices have a trend of spanwise motion. But the deflector structure can prevent the separation on the side of the tail car. Besides, the bogie fairings do not affect the formation process and mechanism of the wake vortices, but the fairings prevent the low-speed fluid in the bogie installation cabin from flowing to the side of the train and reduce the number of the vortices in the wake region.

Study on Fluid Flow in a Rectangular Container Subjected to a Background Rotation with a Rotational Oscillation Using PIV System (PIV를 이용한 바탕회전하에서 회전요동하는 직사각형 용기 내의 유동해석)

  • Suh, Yong-Kweon;Choi, Yoon-Hwan;Kim, Sung-Kyun;Lee, Du-Yeol
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.6
    • /
    • pp.845-851
    • /
    • 2000
  • In this paper, we show the numerical and the experimental results of two-dimensional fluid motions inside a rectangular container subjected to a background rotation added by a rotational oscillation. In the PlY experiment we apply a new algorithm, new three step search(NTSS), to the velocity calculation. In the numerical computation, the linear Ekman-pumping model was used to take the bottom friction effect into account. It was found that it well produces the experimental results at low e number.

NATURAL CONVECTION OF WATER IN AN INCLINED CAVITY WITH HEAT GENERATION

  • Sundaravadivelu, K.;Kandaswamy, P.
    • Journal of applied mathematics & informatics
    • /
    • v.12 no.1_2
    • /
    • pp.281-289
    • /
    • 2003
  • The convection of water is investigated in the vicinity of its density maximum temperature (277 K) in an inclined square cavity in the presence of heat sources. Numerical investigations are carried out by maintaining one of the vertical walls uniformly at 273 K and varying the other wall between temperatures 275 K and 285 K at different inclinations angles. The isotherms, streamlines and velocity profiles reveal the possible existence of multicellular fluid motions, and bidirectional velocity distributions. These fluid flow and heat transfer characteristics are significantly modified by the cavity inclination in the presence of heat sources.

Inflow Patterns Around a Water Intake Tower for Selective Withdrawal Depth (선택취수 수심에 따른 취수탑 유입유동 특성)

  • Cho, Yong;Kim, Yong-Yeol
    • The KSFM Journal of Fluid Machinery
    • /
    • v.13 no.6
    • /
    • pp.63-70
    • /
    • 2010
  • Shallow water withdrawal systems have been replaced with a selected withdrawal system to keep stable raw water quality in spite of occurrence of algae and muddy inflow. Before reconstruction of the water intake tower in Yongdam reservoir supplying water to Gosan water treatment facility, we have predicted flow patterns of inflowing water into the water intake tower for various withdrawal conditions. It has been predicted that the water in the withdrawal layer is significantly inflowed from the front with fast velocity into the water intake tower irrespective of withdrawal depth, while the water away from the withdrawal layer is withdrawed a little from the side with slow velocity.

Aerodynamic stability analysis of geometrically nonlinear orthotropic membrane structure with hyperbolic paraboloid in sag direction

  • Xu, Yun-ping;Zheng, Zhou-lian;Liu, Chang-jiang;Wu, Kui;Song, Wei-ju
    • Wind and Structures
    • /
    • v.26 no.6
    • /
    • pp.355-367
    • /
    • 2018
  • This paper studies the aerodynamic stability of a tensioned, geometrically nonlinear orthotropic membrane structure with hyperbolic paraboloid in sag direction. Considering flow separation, the wind field around membrane structure is simulated as the superposition of a uniform flow and a continuous vortex layer. By the potential flow theory in fluid mechanics and the thin airfoil theory in aerodynamics, aerodynamic pressure acting on membrane surface can be determined. And based on the large amplitude theory of membrane and D'Alembert's principle, interaction governing equations of wind-structure are established. Then, under the circumstance of single-mode response, the Bubnov-Galerkin approximate method is applied to transform the complicated interaction governing equations into a system of second-order nonlinear differential equation with constant coefficients. Through judging the frequency characteristic of the system characteristic equation, the critical velocity of divergence instability is determined. Different parameter analysis shows that the orthotropy, geometrical nonlinearity and scantling of structure is significant for preventing destructive aerodynamic instability in membrane structures. Compared to the model without considering flow separation, it's basically consistent about the divergence instability regularities in the flow separation model.

Asymmetric flows of non-Newtonian fluids in symmetric stenosed artery

  • Hun Jung;Park, Jong-Wook;Park, Chan-Guk
    • Korea-Australia Rheology Journal
    • /
    • v.16 no.2
    • /
    • pp.101-108
    • /
    • 2004
  • The hemodynamics behavior of the blood flow is influenced by the presence of the arterial stenosis. If the stenosis is present in an artery, normal blood flow is disturbed. In the present study, the characteristics of pulsatile flow in the blood vessel with stenosis are investigated by the finite volume method. For the validation of numerical model, the computation results are compared with the experimental ones of Ojha et al. in the case of 45% stenosis with a trapezoidal profile. Comparisons between the measured and the computed velocity profiles are favorable to our solutions. Finally, the effects of stenosis severity and wall shear stress are discussed in the present computational analysis. It can be seen, where the non-dimensional peak velocity is displayed for all the stenosis models at a given severity of stenosis, that it is exponentially increased. Although the stenosis and the boundary conditions are all symmetric, the asymmetric flow can be detected in the more than 57% stenosis. The instability by a three-dimensional symmetry-breaking leads to the asymmetric separation and the intense swirling motion downstream of the stenosis.

Measurement of the Velocity field of Rotor-Stator in a Centrifugal Turbine Pump by Using PIV (PIV를 이용한 터빈펌프의 동${\cdot}$정익 속도장 계측)

  • Im, Yu-Cheong;Seo, Min-Sik;Lee, Young-Ho
    • 유체기계공업학회:학술대회논문집
    • /
    • 1998.12a
    • /
    • pp.11-18
    • /
    • 1998
  • The present experimental study is focused on the application of multi-point simultaneous measurement by PIV(Particle Image Velocimetry) to rotor-stator region within centrifugal turbine pump. Six different kinds of rpm(120, 500, 1000, 1500, 2000 and 2500) are selected as experimental condition. Optimized cross correlation identification to obtain velocity vectors is implemented by direct calculation of correlation coefficients. Fine optical setup deeply concerned with PIV performance is arranged for accurate PIV measurement of high-speed complex flow. The instantaneous and time-mean velocity distribution and velocity profile are represented quantitatively at the rotor and stator region.

  • PDF