Acknowledgement
The research described in this paper was financially supported by the National Natural Science Foundation of China (grant numbers 51975487).
References
- Baker, C. (2010), "The flow around high speed trains", J. Wind Eng. Ind. Aerod. 98, 277-298. https://doi.org/10.1016/j.jweia.2009.11.002.
- Bell, J.R., Burton, D., Thompson, M., Herbst, A. and Sheridan, J. (2014), "Wind tunnel analysis of the slipstream and wake of a high-speed train". J. Wind Eng. Ind. Aerod., 134, 122-138. https://doi.org/10.1016/j.jweia.2014.09.004.
- Bell, J.R., Burton, D., Thompson, M.C., Herbst, A.H. and Sheridan, J. (2016a), "Flow topology and unsteady features of the wake of a generic high-speed train", J. Fluids Struct., 61, 168-183. https://doi.org/10.1016/j.jfluidstructs.2015.11.009.
- Bell, J.R., Burton, D., Thompson, M.C., Herbst, A.H. and Sheridan, J. (2016b), "Dynamics of trailing vortices in the wake of a generic high-speed train", J. Fluids Struct., 65, 238-256. https://doi.org/10.1016/j.jfluidstructs.2016.06.003.
- Bell, J.R., Burton, D., Thompson, M.C., Herbst, A.H. and Sheridan, J. (2017a), "The effect of tail geometry on the slipstream and unsteady wake structure of high-speed trains", Exp. Therm. Fluid Sci., 83, 215-230. https://doi.org/10.1016/j.expthermflusci.2017.01.014.
- Bell, J.R., Burton, D., Thompson, M.C., Herbst, A.H. and Sheridan, J. (2017b), "A wind-tunnel methodology for assessing the slipstream of high-speed trains". J. Wind Eng. Ind. Aerod., 166, 1-19. https://doi.org/10.1016/j.jweia.2017.03.012.
- Bell, J.R., Burton, D., Thompson, M.C., Herbst, A.H., Sheridan, J. (2015), "Moving model analysis of the slipstream and wake of a high-speed train". J. Wind Eng. Ind. Aerod., 136, 127-137. https://doi.org/10.1016/j.jweia.2014.09.007.
- CEN European Standard (2013), Railway Applications-Aerodynamics. Part 4: Requirements and Test Procedures for Aerodynamics on Open Track, CEN EN 14067-4.
- Chong, M.S., Perry, A.E. and Cantwell, B.J. (1990), "A general classification of three-dimensional flow fields", Phys. Fluids A. 2(5), 765-777. https://doi.org/10.1063/1.857730.
- Gao, G., Li, F., He, K., Wang, J., Zhang, J. and Miao, X. (2019), "Investigation of bogie positions on the aerodynamic drag and near wake structure of a high-speed train", J. Wind Eng. Ind. Aerod., 185, 41-53. https://doi.org/10.1016/j.jweia.2018.10.012.
- Guo, D., Shang, K., Zhang, Y., Yang, G. and Sun, Z. (2016), "Influences of affiliated components and train length on the train wind", Acta Mech. Sin., 32, 191-205. https://doi.org/10.1007/s10409-015-0553-z.
- Huang, N.E, Shen, Z. and Long, S.R. (1999), "A new view of nonlinear water waves: the Hilbert spectrum", Annu Rev Fluid Mech., 31, 417-457. https://doi.org/10.1146/annurev.fluid.31.1.417.
- Huang, N.E., Shen, Z. and Long, S.R. (1998), "The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis", Proceedings of Royal Society. 44, 903-995. https://doi.org/10.1098/rspa.1998.0193.
- Hunt, J.C.R, Wray, A.A. and Moin P. (1988), "Eddies, streams, and convergence zones in turbulent flows", Center for Turbulence Research Proceedings of the Summer Program. 193-208.
- Jeong, J. and Hussain, F. (1995), "On the identification of a vortex", J. Fluid Mech. 285(4), 69-94. https://doi.org/10.1017/S0022112095000462.
- Liu, W., Guo, D., Zhang, Z., Chen, D. and Yang, G. (2019), "Effects of bogies on the wake flow of a high-speed train", Appl. Sci.-Basel., 9(4), 759. https://doi.org/10.3390/app9040759.
- Mandic, D.P., Rehman, N.U., Wu, Z. and Huang, N.E. (2013), "Empirical mode decomposition-based time-frequency analysis of multivariate signals: the power of adaptive data analysis", IEEE Signal Process. Mag. 30, 74-86. https://doi.org/10.1109/MSP.2013.2267931.
- Muld, T.W., Efraimsson, G. and Henningson, D.S. (2012), "Flow structures around a high-speed train extracted using Proper Orthogonal Decomposition and Dynamic Mode Decomposition", Comput. Fluids. 57, 87-97. https://doi.org/10.1016/j.compfluid.2011.12.012.
- Muld, T.W., Efraimsson, G. and Henningson, D.S. (2014), "Wake characteristics of high-speed trains with different lengths", Proc. Inst. Mech. Eng. Part F-J. Rail Rapid Transit., 228, 333-342. https://doi.org/10.1177/0954409712473922.
- Niu, J.Q., Zhou, D. and Liang, X.F. (2017), "Experimental research on the aerodynamic characteristics of a high-speed train under different turbulence conditions", Experiment. Thermal Fluid Sci., 80, 117-125. https://doi.org/10.1016/j.expthermflusci.2016.08.014.
- Osth, J., Kaiser, E., Krajnovic, S. and Noack, B.R. (2015), "Cluster-based reduced-order modelling of the flow in the wake of a high speed train", J. Wind Eng. Ind. Aerod., 145, 327-338. https://doi.org/10.1016/j.jweia.2015.06.003.
- Pope, C.W. (2007), "Effective management of risk from slipstream effects at trackside and platforms", Rail Safety Standards Board-T425 Report.
- Raghunathan, R.S., Kim, H.D. and Setoguchi, T. (2002), "Aerodynamics of high-speed railway train", Prog. Aeosp. Sci., 38(6), 469-514. https://doi.org/10.1016/S0376-0421(02)00029-5.
- Spalart, P.R. (2000), "Strategies for turbulence modelling and simulations", Int. J. Heat Fluid Flow. 21, 252-263. https://doi.org/10.1016/B978-008043328-8/50001-1.
- Spalart, P.R. (2009), "Detached-Eddy Simulation", Annu. Rev. Fluid Mech., 41, 181-202. https://doi.org/10.1146/annurev.fluid.010908.165130.
- Wang, D., Chen, C., Hu, J. and He, Z. (2020b), "The effect of Reynolds number on the unsteady wake of a high-speed train", J. Wind Eng. Ind. Aerod., 204, 104223. https://doi.org/10.1016/j.jweia.2020.104223.
- Wang, J., Gao, G., Li, X., Liang, X. and Zhang, J. (2020a), "Effect of bogie fairings on the flow behaviours and aerodynamic performance of a high-speed train", Veh. Syst. Dyn. 58, 890-910. https://doi.org/10.1080/00423114.2019.1607400.
- Wang, J., Minelli, G., Dong, T., Chen, G. and Krajnovic, S. (2019), "The effect of bogie fairings on the slipstream and wake flow of a high-speed train. An IDDES study", J. Wind Eng. Ind. Aerod., 191, 183-202. https://doi.org/10.1016/j.jweia.2019.06.010.
- Wang, S., Bell, J.R., Burton, D., Herbst, A.H., Sheridan, J. and Thompson, M.C. (2017), "The performance of different turbulence models (URANS, SAS and DES) for predicting high-speed train slipstream", J. Wind Eng. Ind. Aerod., 165, 46-57. https://doi.org/10.1016/j.jweia.2017.03.001.
- Wang, S., Burton, D., Herbst, A., Sheridan, J. and Thompson, M.C. (2018b), "The effect of bogies on high-speed train slipstream and wake", J. Fluids Struct. 83, 471-489. https://doi.org/10.1016/j.jfluidstructs.2018.03.013.
- Wang, S., Burton, D., Herbst, A.H., Sheridan, J. and Thompson, M.C. (2018a), "The effect of the ground condition on high-speed train slipstream", J. Wind Eng. Ind. Aerod., 172, 230-243. https://doi.org/10.1016/j.jweia.2017.11.009.
- Xia, C., Wang, H., Shan, X., Yang, Z. and Li, Q. (2017), "Effects of ground configurations on the slipstream and near wake of a high-speed train", J. Wind Eng. Ind. Aerod., 168, 177-189. https://doi.org/10.1016/j.jweia.2017.06.005.
- Xiao, Z., Liu, J., Luo, K., Huang, J. and Fu, S. (2013), "Investigation of flows around a rudimentary landing gear with advanced detached-eddy-simulation approaches", AIAA J. 51(1), 107-125. https://doi.org/10.2514/1.J051598.
- Yao, S.B., Guo, D.L., Sun, Z.X., Yang, G.W. and Chen, D.W. (2014), "Optimization design for aerodynamic elements of high speed trains", Comput. Fluids. 95, 56-73. https://doi.org/10.1016/j.compfluid.2014.02.018.
- Yao, S.B., Sun, Z.X., Guo, D.L., Chen, D.W., andYang, G.W. (2013), "Numerical study on wake characteristics of high-speed trains", Sinica Acta Mech. Sin. 29, 811-822. https://doi.org/10.1007/s10409-013-0077-3.
- Zhou, Z., Xia, C., Shan, X., and Yang, Z. (2020), "The impact of bogie sections on the wake dynamics of a high-speed train", Flow Turbul. Combust. 104, 89-113. https://doi.org/10.1007/s10494-019-00052-w.