• Title/Summary/Keyword: fluid flow velocity

Search Result 1,740, Processing Time 0.029 seconds

Velocity Measurement of PIV Using a General Light Source (일반 광원을 이용한 PIV의 속도 측정)

  • 이교태
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.23 no.4
    • /
    • pp.559-564
    • /
    • 1999
  • A particle image velocimetry is the representative technique for measuring flow velocities at whole field simultaneously. The present study adopted the PTV method for velocity acquisition in a square enclosure with initially isothermal fluid by using a general lamp-based sheet light source. The enclosure was composed of hot and cold vertical wall and was confined by two horizon-tal adiabatic walls. The drift velocities were measured and the drift was visualized by PTV for a rayleigh number of 5.28{\times}10^8.$ Obtained instant simulataneous velocity vectors show flow pattern and the result of horizontal velocity profile agree well with the numerical result.

  • PDF

Atomization Characteristics of shear coaxial twin fluid injector (동축형 인젝터의 미립화 특성)

  • Han, J.S.;Kang, G.T.;Kim, Y.;Kim, S.J.
    • Journal of ILASS-Korea
    • /
    • v.5 no.4
    • /
    • pp.40-46
    • /
    • 2000
  • To understand the basic the structure of the spray field and to obtain the initial conditions for computational models for shear coaxial twin-fluid injectors. the atomization characteristics under different flow and geometric conditions were examined. The spray characteristics such as SMD, mean axial and radial velocities, Dia. of droplets and volume flux with a P.D.P.A. Water and nitrogen gas under atmospheric conditions were used as a test fluids. The drops produced by shear coaxial injectors continue to disintegrate along the spray axis and decrease their sizes. SMD was the maximum at the spray center of spray and decreased with increasing radial distance. The results of this parametric study showed that SMD decreased with increasing gas injection velocity as well as with decreasing liquid injection mass flow rate, The relative velocity between gas and liquid flow played a significant role resulted in decreasing SMD and in spreading the spray. Recessing the liquid orifice resulted decreasing SMD and a spreading the spray. Recess of liquid orifice by 5.0mm showed best atomization characteristics in this experiment. Although drop diameter changes, shear coaxial injector sprays had constant velocity and exhibited a high degree of radial symmetry.

  • PDF

A Study on the Influence of Centrifugal Force for Flow Characteristics in Square-sectional Air Duct (정방형 공기덕트 내부의 유동특성에 원심력이 미치는 영향에 관한 연구)

  • Bong, Tae-Keun;Cho, Dae-Hwan
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.18 no.5
    • /
    • pp.455-460
    • /
    • 2012
  • In this paper, an experimental and numerical investigation of transition characteristics in a square-sectional curved duct flow under Centrifugal force is presented. The experimental study is carried out to measure axial velocity profiles by using Laser Doppler Velocimeter (LDV) system. Computational fluid dynamic (CFD) simulation was performed using the commercial CFD code FLUENT to investigate the transition characteristics. The flow development is found to depend upon Dean number and curvature ratio. The velocity profiles in center of the duct have lower value than those of the inner and outer walls because of the centrifugal forces.

A Study of the Flow Phenomenon of Water in a Channel with Flat Plate Obstruction Geometry at the Entry

  • Khan, M.M.K.;Kabir, M.A.;Bhuiyan, M.A.
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.6
    • /
    • pp.879-887
    • /
    • 2003
  • The flow in a parallel walled test channel, when obstructed with a geometry at the entrance, can be forward, reverse and stagnant depending on the position of the obstruction. This interesting flow phenomenon has potential benefit in the control of energy and various flows in the process industry In this experiment, the flat plate obstruction geometry was used as an obstruction at the entry of the test channel. The parameters that influence the flow inside and around the test channel were the gap (g) between the test channel and the obstruction geometry, the length (L) of the test channel and the Reynolds number (Re). The effect of the gap to channel width ratio (g/w) on the magnitude of the velocity ratio (V$\_$i/ / V$\_$o/ : velocity inside/ velocity outside the test channel) was investigated for a range of Reynolds numbers. The maximum reverse flow observed was nearly 20% to 60% of the outside velocity for Reynolds number ranging from 1000 to 9000 at g/w ratio of 1.5. The maximum forward velocity inside the test channel was found 80% of the outside velocity at higher g/w ratio of 8. The effect of the test channel length on the velocity ratio was investigated for different g/w ratios and a fixed Reynolds number of 4000. The influence of the Reynolds number on the velocity ratio is also discussed and presented for different gap to width ratio (g/w). The flow visualisation photographs showing fluid motion inside and around the test channel are also presented and discussed.

Internal Flow Analysis and Structural Design in Plastic Automatic Control Valve for the Semiconductor Chemical Liquid (반도체 약액용 자동제어 플라스틱 밸브의 내부 유동해석)

  • Lee, Gyu-Hoon;Lee, Eung-Suk;Lee, Min-Ki;Kim, Jin-Su;Bae, Il-Jin
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.2
    • /
    • pp.311-315
    • /
    • 2012
  • Diaphragm type noncontact automatic control valve is a valve for controling acidic PR(Photo Resist) liquid used in the semiconductor process. PR is photosensitive liquid that changes phases depending on light transmittance. PR is very toxic and expensive; the purpose of this paper is to address methods that prevent loss due to leaks. The design of noncontact precise automatic control valve is expected to play an important role in controlling fluid flow, therefore influencing energy conservation and environmental improvement. In this paper, diaphragm type automatic control valve's part design, assembly and simulation are introduced. Also, through the analysis of fluid flow the valve's internal velocity, pressure, and turbulent intensity are interpreted. This paper proposes to contribute to the improvement of the valve's performance.

Influence of a weak superposed centripetal flow in a rotor-stator system for several pre-swirl ratios

  • Nour, Fadi Abdel;Rinaldi, Andrea;Debuchy, Roger;Bois, Gerard
    • International Journal of Fluid Machinery and Systems
    • /
    • v.5 no.2
    • /
    • pp.49-59
    • /
    • 2012
  • The present study is devoted to the influence of a superposed radial inflow in a rotor-stator cavity with a peripheral opening. The flow regime is turbulent, the two boundary layers being separated by a core region. An original theoretical solution is obtained for the core region, explaining the reason why a weak radial inflow has no major influence near the periphery of the cavity but strongly affects the flow behavior near the axis. The validity of the theory is tested with the help of a new set of experimental data including the radial and tangential mean velocity components, as well as three components of the Reynolds stress tensor measured by hot-wire anemometry. The theoretical results are also in good agreement with numerical results obtained with the Fluent code and experimental data from the literature.

Hall Effect on Unsteady Couette Flow. with Heat Transfer Under Exponential Decaying Pressure Gradient

  • Attia HazemAIi
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.11
    • /
    • pp.2053-2060
    • /
    • 2005
  • The unsteady Couette flow of an electrically conducting, V1SCOUS, incompressible fluid bounded by two parallel non-conducting porous plates is studied with heat transfer taking the Hall effect into consideration. An external uniform magnetic field and a uniform suction and injection are applied perpendicular to the plates while the fluid motion is subjected to an exponential decaying pressure gradient. The two plates are kept at different but constant temperatures while the Joule and viscous dissipations are included in the energy equation. The effect of the ion slip and the uniform suction and injection on both the velocity and temperature distributions is examined.

A study on Flow Characteristic inside Passenger's Compartment under Recirculation Cool vent mode using CFX (CFX를 이용한 내부순환모드에서의 자동차 내부 유동특성 연구)

  • Kim, Yoon-Kee;Yang, Jang-Sik;Kim, Kyung-Chun;Ji, Ho-Seong
    • Journal of the Korean Society of Visualization
    • /
    • v.8 no.1
    • /
    • pp.25-30
    • /
    • 2010
  • The flow characteristics under recirculation cool vent mode is numerically studied using commercial fluid dynamic code(CFX). For the reliable analysis, real vehicle and human FE model is employed in grid generation process. The geometrical location and shape of panel vent, and exhaust vent is set as that of real vehicle model. The flowrate of the working fluid is determined as 330CMH which is equivalent to 70 percent of maximum capacity of HVAC system. The high velocity regions are formed around 4 each panel vent. Because of the non-symmetrically located exhaust, non-uniform flow and partial backflow near the door trim is observed. Streaklines start from each panel vent show the flow pattern of the airflow in the passenger's compartment very well.

Bionic Study of Variable Viscosity on MHD Peristaltic Flow of Pseudoplastic Fluid in an Asymmetric Channel

  • Khan, Ambreen A.;Muhammad, Saima;Ellahi, R.;Zia, Q.M. Zaigham
    • Journal of Magnetics
    • /
    • v.21 no.2
    • /
    • pp.273-280
    • /
    • 2016
  • In this paper, the peristaltic flow of Psedoplastic fluid with variable viscosity in an asymmetric channel is examined. The bionic effects by means of magnetohydrodynamics (MHD) are taken into account. The assumptions of long wave length and low Reynolds number are taken into account. The basic equations governing the flow are first reduced to a set of ordinary differential equation by using appropriate transformation for variables and then solve by using perturbation method. The effect of physical parameters on the pressure rise, velocity and pressure gradient are illustrated graphically. The trapping phenomenon is analyzed through stream lines. A suitable comparison has also been made as a limiting case of the considered problem.

Experimental Study on the Opening Characteristics for Swing Check Valves (스윙형 역지 밸브의 열림 특성에 관한 실험적 연구)

  • Song, Seok-Yoon;Kim, Yang-Seok;Park, Sung-Keun;Hong, Sung-Yull
    • 유체기계공업학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.555-561
    • /
    • 2003
  • The experimental apparatus is designed and installed to measure the disc positions with flow velocity, $V_{open}\;and\;V_{min}$ for 3 inch and 6 inch swing check valves. The minimum flow velocity necessary to just open the disc at a full open position is referred to as $V_{open}\;and\;V_{min}$ is defined as the minimum velocity to fully open the disc and hold it without motion. In the experiments, $V_{min}$ is determined as the minimum flow velocity at which the back stop load begins to increase after the disc is idly opened or the oscillation level of disc is reduced below $1^{\circ}$. The results show that the $V_{min}$ velocities for 3 inch and 6 inch swing check valves are about 15.6% and 4.8% higher than the $V_{open}$ velocities, respectively. Although the experiments were done with the stable uniform flow, additional experiments will be performed to determine the effects of the upstream disturbances.

  • PDF