• Title/Summary/Keyword: fluid and flow

Search Result 7,251, Processing Time 0.035 seconds

Design Optimization of Mixed-flow Pump in a Fixed Meridional Shape

  • Kim, Sung;Choi, Young-Seok;Lee, Kyoung-Yong;Kim, Jun-Ho
    • International Journal of Fluid Machinery and Systems
    • /
    • v.4 no.1
    • /
    • pp.14-24
    • /
    • 2011
  • In this paper, design optimization for mixed-flow pump impellers and diffusers has been studied using a commercial computational fluid dynamics (CFD) code and DOE (design of experiments). We also discussed how to improve the performance of the mixed-flow pump by designing the impeller and diffuser. Geometric design variables were defined by the vane plane development, which indicates the blade-angle distributions and length of the impeller and diffusers. The vane plane development was controlled using the blade-angle in a fixed meridional shape. First, the design optimization of the defined impeller geometric variables was achieved, and then the flow characteristics were analyzed in the point of incidence angle at the diffuser leading edge for the optimized impeller. Next, design optimizations of the defined diffuser shape variables were performed. The importance of the geometric design variables was analyzed using $2^k$ factorial designs, and the design optimization of the geometric variables was determined using the response surface method (RSM). The objective functions were defined as the total head and the total efficiency at the design flow rate. Based on the comparison of CFD results between the optimized pump and base design models, the reason for the performance improvement was discussed.

Flow Analyses Inside Jet Pumps Used for Oil Wells

  • Samad, Abdus;Nizamuddin, Mohammad
    • International Journal of Fluid Machinery and Systems
    • /
    • v.6 no.1
    • /
    • pp.1-10
    • /
    • 2013
  • Jet pump is one type of artificial lifts and is used when depth and deviation of producing wells increases and pressure depletion occurs. In the present study, numerical analysis has been carried out to analyze the flow behavior and find the performance of the jet pump. Reynolds-averaged Navier Stokes equations were solved and k-${\varepsilon}$ turbulence model was used for simulations. Water and light oil as primary fluids were used to pump water, light oil and heavy oil. The ratios of area and length to diameter of the mixing tube were considered as design parameters. The pump efficiency was considered to maximize for the downhole conditions. It was found that the increase in viscosity and density of the secondary fluid reduced efficiency of the system. Water as primary fluid produced better efficiency than the light oil. It was also found that the longer throat length increased efficiency upto 40% if light oil was used as primary fluid and secondary fluid viscosity was 350 cSt.

Flow Evaluation and Hemolysis Analysis of BVAD Centrifugal Blood Pump by Computational Fluids Dynamics

  • Bumrungpetch, Jeerasit;Tan, Andy Chit;Liu, Shu-Hong;Luo, Xian-Wu;Wu, Qing-Yu;Yuan, Jian-Ping;Zhang, Ming-Kui
    • International Journal of Fluid Machinery and Systems
    • /
    • v.7 no.1
    • /
    • pp.34-41
    • /
    • 2014
  • Computational fluid dynamics (CFD) and particle image velocimetry (PIV) are commonly used techniques to evaluate the flow characteristics in the development stage of blood pumps. CFD technique allows rapid change to pump parameters to optimize the pump performance without having to construct a costly prototype model. These techniques are used in the construction of a bi-ventricular assist device (BVAD) which combines the functions of LVAD and RVAD in a compact unit. The BVAD construction consists of two separate chambers with similar impellers, volutes, inlet and output sections. To achieve the required flow characteristics of an average flow rate of 5 l/min and different pressure heads (left - 100mmHg and right - 20mmHg), the impellers were set at different rotating speeds. From the CFD results, a six-blade impeller design was adopted for the development of the BVAD. It was also observed that the fluid can flow smoothly through the pump with minimum shear stress and area of stagnation which are related to haemolysis and thrombosis. Based on the compatible Reynolds number the flow through the model was calculated for the left and the right pumps. As it was not possible to have both the left and right chambers in the experimental model, the left and right pumps were tested separately.

A Study on Flow Characteristics with the Installed Location Change of Mechanical Deflector (기계적 편향판 설치위치의 변화에 따른 유동특성에 대한 연구)

  • Kim, Kyoung-Ryun;Park, Jong-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.18 no.5
    • /
    • pp.49-53
    • /
    • 2015
  • Thrust vector control is the method which generates the side force and roll moment by controlling exhausted gas directly in a rocket nozzle. TVC is classified by mechanical and fluid dynamic methods. Mechanical methods can change the flow direction by several objects installed in a rocket nozzle exhaust such as tapered ramp tabs and jet vane. Fluid dynamic methods control the flight direction with the injection of secondary gaseous flows into the rocket nozzle. The tapered ramp tabs of mechanical methods are used in this paper. They installed at the rear in the rocket nozzle could be freely moved along axial and radial direction on the mounting ring to provide the mass flow rate which is injected from the rocket nozzle. TVC of the tapered ramp tabs has the potential to produce both large axial thrust and high lateral force. We have conducted the experimental research and flow analysis of ramp tabs to show the performance and the structural integrity of the TVC. The experiments are carried out with the supersonic cold flow system and the schlieren graph. This paper provides to analyze the location of normal shock wave and distribution of surface pressure on the region enclosed by the tapered ramp tabs.

Optimization of Hydraulic Bifurcation by Computational Fluid Dynamics (전산해석기법을 이용한 수압분기관의 최적형상 설계)

  • Kang, Seung-Kyu;Kang, Sin-Hyoung;Sung, Nak-Won;Yoon, Joon-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.10 no.1 s.40
    • /
    • pp.7-13
    • /
    • 2007
  • This study proposes a modified bifurcation model with a computational fluid analysis according to variation of a bifurcation geometry. FLUENT is used for a calculation of the head losses in case of a generation and a pumping. The pressure, velocity field and turbulent intensity are simulated in a bifurcation. With consideration about these flow properties, we propose the modified model to improve a flow efficiency and reduce a sound. The proposed model is able to cut down a head loss by 45% when a generation and 36% when a pumping.

Direct Numerical Simulation of an Electro-Rheological Channel Flow (ER 유체의 채널유동에 대한 직접수치해석)

  • Cho, Sang-Ho;Choi, Hyoung-Gwon;Yoo, Jung-Yul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.1
    • /
    • pp.72-80
    • /
    • 2004
  • Steady flow of an ER (electro-rheological) fluid in a two-dimensional electrode channel is studied by using FEM. Hydrodynamic interactions between the particles and the fluid are calculated by solving the Navier-Stokes equation combined with the equation of motion for each particle, where the multi-body electrostatic interaction is described by using point-dipole model. Motion of the particles in the ER fluid is elucidated in conjunction with the mechanisms of the flow resistance and the increase of viscosity. The ER effects have been studied by varying the Mason number and volume fraction of particles. These parameters have an influence on the formation of the chains resulting in the changes of the fluid velocity and the effective viscosity of ER fluids.

English Title of The Paper (Times New Roman 12pt) (용융상태 알루미늄 소재의 유동제어 및 재활용 기술)

  • Hong K.D.;Kim K.D.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.1020-1023
    • /
    • 2005
  • The fluid flow and thermal analysis were carried out by using the finite element program, Ansys. In analysis process, a electromagnetic analysis was accomplished. In afterwards, Fluid and thermal analysis was done. Fluid flow and heat could be produced by electromagnetic pump. In other words, A magnetic field which electromagnetic pump generates influences Liquid Material(Al alloy). This paper calculates the fluid flow and temperature distribution according to time. Using material is Al alloy(A356).

  • PDF

Numerical Study of Coherent Vortex in Late Wake Downstream of a Sphere in Weakly Stratified Fluid (잔류내 응집 와류의 수치 해석)

  • Lee, Sung-Su;Lee, Young-Kyu;Yang, Kyung-Soo
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1863-1868
    • /
    • 2003
  • Decades of studies of geophysical flow have unveiled that the flow downstream of obstacles in stratified flow consists of attached wake and strong internal waves, or separated, fluctuating wake and persistent late wakes. Among unique and interesting characteristics of the stratified flow past obstacles is the generation of coherent vortex the late wake far downstream of the object. Unlike in homogeneous fluid, the flow field downstream self-develops coherent vortex even after diminishing of the near wake, no matter how small the stratification is. This paper present a computational approach to simulate the generation of the coherent vortex structure in late wake of a moving sphere submerged in weakly stratified fluid. The results are in consistent with several experimental observations and the vortex stretching mechanism is employed to explain the process of coherence.

  • PDF

Fluid-Structure Interaction Study on Diffuser Pump With a Two-Way Coupling Method

  • Xu, Huan;Liu, Houlin;Tan, Minggao;Cui, Jianbao
    • International Journal of Fluid Machinery and Systems
    • /
    • v.6 no.2
    • /
    • pp.87-93
    • /
    • 2013
  • In order to study the effect of the fluid-structure interaction (FSI) on the simulation results, the external characteristics and internal flow features of a diffuser pump were analyzed with a two-way flow solid coupling method. And the static and dynamic structure analysis of the blade was also caculated with the FEA method. The steady flow field is based on Reynolds Averaged N-S equations with standard $k-{\varepsilon}$ turbulent model, the unsteady flow field is based on the large eddy simulation, and the structure response is based on elastic transient structural dynamic equation. The results showed that the effect of FSI on the head prediction based on CFD really exists. At the same radius, the van mises stress on the nodes closed shroud and hub was larger than other nodes. A large deformation region existed near inlet side at the middle of blades. The strength of impeller satisfied the strength requirement with static stress analysis based on the fourth strength theory. The dynamic stress varied periodically with the impeller rotating. It was also found that the fundamental frequency of the dynamic stress is the rotating frequency and its harmonic frequency. The frequency of maximum stress amplitude at node 1626 was 7 times of the rotating frequency. The frequency of maximum stress amplitude at node 2328 was 14 times of the rotating frequency. No matter strength failure or fatigue failure, the root of blades near shroud is the key region to analyse.

Computational Study of the Magnetically Suspended Centrifugal Blood Pump (2nd Report: Pressure Fluctuation and Stability of Impeller Rotation for Different Volute Shapes)

  • Ogami, Yoshifumi;Matsuoka, Daisuke;Horie, Masaaki
    • International Journal of Fluid Machinery and Systems
    • /
    • v.4 no.4
    • /
    • pp.375-386
    • /
    • 2011
  • The turbo-type blood pump studied in this paper has an impeller that is magnetically suspended in a double volute casing. The impeller rotates with minimal fluctuations caused by fluid and magnetic forces. In order to improve stability of the rotating impeller and to facilitate long-term use, a careful investigation of the pressure fluctuations and of the fluid force acting on the impeller is necessary. For this purpose, two models of the pump with different volute cross-sectional area are designed and studied with computational fluid dynamics software. The results show that the fluid force varies with the flow rate and shape of the volute, that the fluctuations of fluid force decrease with increasing flow rate and that the vibratory movement of the impeller is more efficiently suppressed in a narrow volute.