• Title/Summary/Keyword: flood wave

Search Result 166, Processing Time 0.021 seconds

Flood Routing of Sequential Failure of Dams by Numerical Model (수치모형을 이용한 순차적 댐 붕괴 모의)

  • Park, Se Jin;Han, Kun Yeun;Choi, Hyun Gu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.5
    • /
    • pp.1797-1807
    • /
    • 2013
  • Dams always have the possibility of failure due to unexpected natural phenomena. In particular, dam failure can cause huge damage including damage for humans and properties when dam downstream regions are densely populated or have important national facilities. Although many studies have been conducted on the analysis of flood waves about single dam failure thus far, studies on the analysis of flood waves about the sequential failure of dams are lacking. Therefore, the purpose of this study was to calculate the peak discharge of sequential failure of dams through flood wave analysis of sequential failure of dams and this analysis techniques to predict flood wave propagation situation in downstream regions. To this end, failure flood wave analysis were conducted for Lawn Lake Dam which is a case of sequential failure of dams among actual failure cases using DAMBRK to test the suitability of the dam failure flood wave analysis model. Based on the results, flood wave analysis of sequential failure of dams were conducted for A dam in Korea assuming a virtual extreme flood to predict flood wave propagation situations and 2-dimensional flood wave analysis were conducted for major flooding points. Then, the 1, 2-dimensional flood wave analysis were compared and analyzed. The results showed goodness-of-fit values exceeding 90% and thus the accuracy of the 1-dimensional sequential failure of dams simulation could be identified. The results of this study are considered to be able to contribute to the provision of basic data for the establishment of disaster prevention measures for rivers related to sequential failure of dams.

A Channel Flood Routing by the Analytical Diffusion Model (해석적 확산모델을 이용한 하도홍수추적)

  • 유철상;윤용남
    • Water for future
    • /
    • v.22 no.4
    • /
    • pp.453-461
    • /
    • 1989
  • The analytical diffusion model is first formulated and its characteristics are critically reviewed. The flood events during the 1986-1988 flood seasons i the IHP Pyungchang Representative Basin are routed by this model and are compared with those by the kinematic wave model. The results showed that the analytical diffusion model simulates the observed flood events much better than the analytical kinematic wave model. The present model is proven to be an excellent means of taking the backwater effect due to lateral inflow or down river stage variations into consideration in channel routing of flood flows. It also requires much less effort and computing time at a desired station compared to any other reliable flood routing methods.

  • PDF

A Modeling of the River Bed Variation due to Flood Wave (홍수파(洪水波)에 의한 하상변동(河床變動) 예측모형(豫測模型))

  • Park, Sang Deog;Lee, Won Hwan;Cho, Won Cheol
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.9 no.2
    • /
    • pp.73-82
    • /
    • 1989
  • When the flood occurs in the alluvial rivers, the rivers adjust to the flood by means of the mechanism of the river bed variations and its morphological changes to pass that safely, the numerical model was developed to simulate the process of the alluvial river bed variation due to flood wave and carried out by the flood routing for flood wave and the sediment routing for river bed variation. The flood wave, river bed variation, and bed material size distribution may be analysed and predicted by this model. The ability of this model to predict the process of river bed response was proved by the application to the reach from Paldang dam to Indogyo site. In view of the flood analysis considering the sediment process, the effects of river bed variation for the flood routing may be negligible because the river bed variation is smaller than the unsteady flow variation during the same period. By the application of this model, it is shown that, in occurring of sequential flood events, the variation of the river bed and bed material size distribution due to flood wave is more dependent on the first flood event than the latter flood events, and that the river bed variation in this reach of the downstream Han river is dependent on the degradation and the coarsening of bed materials.

  • PDF

Numerical Analysis of Dam-break Waves in an L-shaped Channel with a Movable Bed (L자형 이동상수로에서 댐 붕괴파의 수치해석)

  • Kim, Dae-Geun;Hwang, Gun
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.3
    • /
    • pp.291-300
    • /
    • 2012
  • We conducted a three-dimensional numerical simulation by using the FLOW-3D, with RANS as the governing equation, in an effort to track the dam-break wave.immediately after a dam break.in areas surrounding where the dam break took place as well as the bed change caused by the dam-break wave. In particular, we computed the bed change in the movable bed and compared the variation in flood wave induced by the bed change with our analysis results in the fixed bed. The analysis results can be summarized as follows: First, the analysis results on the flood wave in the L-shaped channel and on the flood wave and bed change in the movable-bed channel successfully reproduce the findings of the hydraulic experiment. Second, the concentration of suspended sediment is the highest in the front of the flood wave, and the greatest bed change is observed in the direct downstream of the dam where the water flow changes tremendously. Generated in the upstream of the channel, suspended sediment results in erosion and sedimentation alternately in the downstream region. With the arrival of the flood wave, erosion initially prove predominant in the inner side of the L-shaped bend, but over time, it tends to move gradually toward the outer side of the bend. Third, the flood wave in the L-shaped channel with a movable bed propagates at a slower pace than that in the fixed bed due to the erosion and sedimentation of the bed, leading to a remarkable increase in flood water level.

Comparison of Flood Discharge and Velocity Measurements in a Mountain Stream Using Electromagnetic Wave and Surface Image (전자파와 수표면 영상을 이용한 산지하천 홍수유량 및 유속 계측 비교 연구)

  • Yang, Sung-Kee;Kim, Dong-Su;Yu, Kwon-Kyu;Kang, Meyong-Su;Jung, Woo-Yul;Lee, Jun-Ho;Kim, Yong-Seok;You, Ho-Jun
    • Journal of Environmental Science International
    • /
    • v.21 no.6
    • /
    • pp.739-747
    • /
    • 2012
  • Due to the difficulties for measuring flood discharge in the dangerous field conditions, conventional instruments with relatively low accuracy such as float still have been widely utilized for the field survey. It is also limited to use simple stage-discharge relationship for assessment of the flood discharge, since the stage-discharge relationship during the flood becomes complicated loop shape. In recent years, various non-intrusive velocity measurement techniques such as electromagnetic wave or surface images have been developed, which is quite adequate for the flood discharge measurements. However, these new non-intrusive techniques have little tested in the flood condition, though they promised efficiency and accuracy. Throughout the field observations, we evaluated the validity of these techniques by comparing discharge and velocity measurements acquired concurrently during the flood in a mountain stream. As a result, the flood discharge measurements between electromagnetic wave and surface image processing techniques showed high positive relationship, but velocities did not matched very well particularly for the high current speed more 3 m/s. Therefore, it should be noted here that special cares are required when the velocity measurements by those two different techniques are used, for instance, for the validation of the numerical models. In addition, authors assured that, for the more accurate flood discharge measurements, velocity observation as well as stage height is strongly necessary owing that the unsteady flow occurs during the flood.

Flood Travel Time Analysis using Two-dimensional Hydraulic Model in Yeong-san River Downstream (2차원 수리해석모형을 이용한 영산강 하류부의 홍수파 도달시간 분석)

  • Oh, Ji-Hwan;Jo, Jun-Won;Jang, Suk-Hwan;Choov, Jeong-Ho;Oh, Kyoung-Doo
    • Journal of Wetlands Research
    • /
    • v.20 no.4
    • /
    • pp.446-457
    • /
    • 2018
  • Forecasting of flood wave travel time is very important in terms of river management and operation. Recently, the hydrological environment of has changed due to the construction of multi-function weir in the river. It is necessary to analyze flood wave travel time, including hydraulic structures in the channel. The flood wave travel time according to the discharge and downstream water level operating conditions was analyzed using HEC-RASver5.0.3 which is capable a two-dimentional analysis. This study showed nonlinear characteristics of flood wave travel times due to increase of discharge and operating conditions. The results of this study will be helpful for the operation of multi-function weir as well as the river operation.

A Channel Flood Routing by the Implicit Dynamic Wave Model

  • Yoon, Yong-Nam;Chung, Jong-Ho
    • Korean Journal of Hydrosciences
    • /
    • v.2
    • /
    • pp.69-84
    • /
    • 1991
  • US NWS/NETWORK is applied for the analysis of the flood of July 11-15, 1981 through the Goan-Indogyo reach of the Han River. For the flood hydrography synthesis of the lateral inflows from the major tributaries into the main reach the Cleak method is employed. NETWORK coupled with the Clark method of hydrography synthesis simulated with a fair accuracy the oberved flood hydrograph at the downstream boundary of the routing reach. The dffect of SCS runoff curve number for fributary flood synthesis is evaluated. The characteristics of the station variations and time variations of the flood discharges in the reach is also analyzed.

  • PDF

Flood Damage Assessment According to the Scenarios Coupled with GIS Data (GIS 자료와 연계한 시나리오별 홍수피해액 분석)

  • Lee, Geun-Sang;Park, Jin-Hyeg
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.19 no.4
    • /
    • pp.71-80
    • /
    • 2011
  • A simple and an improved methods for the assessment of flood damage were used in previous studies, and the Multi-Dimensional Flood Damage Assessment (MD-FDA) has been applied since 2004 in Korea. This study evaluated flood damage of dam downstream using considering MD-FDA method based on GIS data. Firstly, flood water level with FLDWAV (Flood Wave routing) model was input into cross section layer based on enforcement drainage algorithm, water depth grid data were created through spatial calculation with DEM data. The value of asset of building and agricultural land according to local government was evaluated using building layer from digital map and agricultural land map from landcover map. Also, itemized flood damage was calculated by unit price to building shape, evaluated value of housewares to urban type, unit cost to crop, tangible and inventory asset of company connected with building, agricultural land, flooding depth layer. Flood damage in rainfall frequency of 200 year showed 1.19, 1.30 and 1.96 times to flood damage in rainfall frequency of 100 year, 50 year and 10 year respectively by flood damage analysis.

A Channel Flood Routing by the Analytical Diffusion Model

  • Yoon, Yong-Nam;Yoo, Chul-Sang
    • Korean Journal of Hydrosciences
    • /
    • v.1
    • /
    • pp.1-14
    • /
    • 1990
  • The analytical diffusion model is first formulated and its characteristics are critically reviewed. The flood events during the 1985-1986 flood seasons in the IHP Pyungchang Representative Basin are routed by this model and are compared with those routed by the kinematic wave model. The present model is proven to be an excellent means of taking the backwater effects due to lateral inflow or downstream river stage variations into consideration in channel routing of flood flows. It also requires much less effort and computing time at a desired station compared to any other reliable flood routing methods.

  • PDF

A Numerical Study on Characteristics of Flood Wave Passing through Urban Areas (2) : Application and Analysis (도시지역을 관통하는 홍수파의 특성에 관한 수치적 연구 (2) : 적용 및 분석)

  • Jeong, Woo-Chang;Cho, Yong-Sik;Lee, Jin-Woo
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.10 no.1
    • /
    • pp.65-72
    • /
    • 2010
  • In this study, the effects of urban areas against flood waves due to a dam failure were numerically investigated based on the two laboratory experiments and the predicted water surface elevations at specific points showed good agreement with available measurements. In the first experiment, a relatively high water depth and the delay effect of flow at the front of urban areas are observed. The urban areas may become a large obstacle against smooth propagation of flood wave. In the second one, as the inflow increases, moreover, the water surface elevations can be classified into abruptly decreasing portion and slowly decreasing portion, and the first arrival time to the front of urban area is decreasing with the increasing inflow.