• Title/Summary/Keyword: flip-flop circuit

Search Result 67, Processing Time 0.021 seconds

Area- and Energy-Efficient Ternary D Flip-Flop Design

  • Taeseong Kim;Sunmean Kim
    • Journal of Sensor Science and Technology
    • /
    • v.33 no.3
    • /
    • pp.134-138
    • /
    • 2024
  • In this study, we propose a ternary D flip-flop using tristate ternary inverters for an energy-efficient ternary circuit design of sequential logic. The tristate ternary inverter is designed by adding the functionality of the transmission gate to a standard ternary inverter without an additional transistor. The proposed flip-flop uses 18.18% fewer transistors than conventional flip-flops do. To verify the advancement of the proposed circuit, we conducted an HSPICE simulation with CMOS 28 nm technology and 0.9 V supply voltage. The simulation results demonstrate that the proposed flip-flop is better than the conventional flip-flop in terms of energy efficiency. The power consumption and worst delay are improved by 11.34% and 28.22%, respectively. The power-delay product improved by 36.35%. The above simulation results show that the proposed design can expand the Pareto frontier of a ternary flip-flop in terms of energy consumption. We expect that the proposed ternary flip-flop will contribute to the development of energy-efficient sensor systems, such as ternary successive approximation register analog-to-digital converters.

Design and Measurement of an SFQ OR gate composed of a D Flip-Flop and a Confluence Buffer (D Flip-Flop과 Confluence Buffer로 구성된 단자속 양자 OR gate의 설계와 측정)

  • 정구락;박종혁;임해용;장영록;강준희;한택상
    • Progress in Superconductivity
    • /
    • v.4 no.2
    • /
    • pp.127-131
    • /
    • 2003
  • We have designed and measured an SFQ(Single Flux Quantum) OR gate for a superconducting ALU (Arithmetic Logic Unit). To optimize the circuit, we used WRspice, XIC and Lmeter for simulations and layouts. The OR gate was consisted of a Confluence Buffer and a D Flip-Flop. When a pulse enters into the OR gate, the pulse does not propagate to the other input port because of the Confluence Buffer. A role of D Flip-Flip is expelling the data when the clock is entered into D Flip-Flop. For the measurement of the OR gate operation, we attached three DC/SFQs, three SFQ/DCs and one RS Flip -Flop to the OR gate. DC/SFQ circuits were used to generate the data pulses and clock pulses. Input frequency of 10kHz and 1MHzwere used to generate the SFQ pulses from DC/SFQ circuits. Output data from OR gate moved to RS flip -Flop to display the output on the oscilloscope. We obtained bias margins of the D Flip -Flop and the Confluence Buffer from the measurements. The measured bias margins $\pm$38.6% and $\pm$23.2% for D Flip-Flop and Confluence Buffer, respectively The circuit was measured at the liquid helium temperature.

  • PDF

On the Characteristics of Series Connected Flip-Flop and Drive of Nixie Tube Operation (Series Connected Flip-Flop의 특성과 표시방전관의 구동에 대하여)

  • 정만영;안병성;김준호
    • 전기의세계
    • /
    • v.13 no.3
    • /
    • pp.21-27
    • /
    • 1964
  • A method of triggering a series connected complementary transister flip-flop is described. Also measurements have been made for the operation region with respect to the input pulse variation. This circuit is compared with a Eccles-Jordan flip-flop when it used as a Nixie tube driver of a neon lamp driyer.

  • PDF

FUZZY FLIP-FLOP CIRCUIT AND ITS APPLICATION

  • Ozawa, Kazuhiro;Hirota, Kaoru
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1993.06a
    • /
    • pp.925-928
    • /
    • 1993
  • In this paper the caracteristics of the fuzzy flip-flop which was proposed as a fuzzy sequential circuit is firstly mentioned. Secondly the circuit construction of typical fuzzy flip-flip circuits using VHDL (Very high speed integrated circuit Hardware Description Language) compiler and simulator is presented. Finally the possibility of the application of the fuzzy sequential circuit will be mentioned.

  • PDF

Design and Fabrication of High Temperature Superconducting Rapid Single Flux Quantum T Flip-Flop (고온 초전도 단자속 양자 T 플립 플롭 설계 및 제작)

  • Kim, J. H.;Kim, S. H.;Jung, K. R.;Kang, J. H.;Syng, G. Y.
    • Progress in Superconductivity
    • /
    • v.3 no.1
    • /
    • pp.87-90
    • /
    • 2001
  • We designed a high temperature superconducting rapid single flux quantum(RSFQ) T flip-flop(TFF) circuit using Xic and WRspice. According to the optimized circuit parameters, we fabricated the TFF circuit with $Y_1$$Ba_2$Cu$_3$$O_{7-x}$(YBCO) interface-controlled Josephson junctions. The whole circuit was comprised of five epitaxial layers including YBCO ground plane. The interface-controlled Josephson junction was fabricated with natural junction barrier that was formed by interface-treatment process. In addition, we report second design for a new flip-flop without ground palne.e.

  • PDF

Low Power Flip-Flop Circuit with a Minimization of Internal Node Transition (인터널 노드 변환을 최소화시킨 저전력 플립플롭 회로)

  • Hyung-gyu Choi;Su-yeon Yun;Soo-youn Kim;Min-kyu Song
    • Transactions on Semiconductor Engineering
    • /
    • v.1 no.1
    • /
    • pp.14-22
    • /
    • 2023
  • This paper presents a low-power flip-flop(FF) circuit that minimizes the transition of internal nodes by using a dual change-sensing method. The proposed dual change-sensing FF(DCSFF) shows the lowest dynamic power consumption among conventional FFs, when there is no input data transition. From the measured results with 65nm CMOS process, the power consumption has been reduced by 98% and 32%, when the data activity is 0% and 100%, respectively, compared to conventional transmission gate FF(TGFF). Further, compared to change-sensing FF(CSFF), the power consumption of proposed DCSFF is smaller by 30%.

Demonstration of rapid single-flux-quantum RS flip-flop using YBCO/Co-YBCO/YBCO ramp-edge Josephson junction with and without ground plane (YBCO/Co-YBCO/YBCO ramp-edge 접합을 이용한 RS flip-flop 회로 제작과 동작)

  • Kim, Jun-Ho;Sung, Geon-Yong;Park, Jong-Hyeok;Kim, Chang-Hun;Jung, Gu-Rak;Hahn, Taek-Sang;Kang, Jun-Hui
    • 한국초전도학회:학술대회논문집
    • /
    • v.10
    • /
    • pp.189-192
    • /
    • 2000
  • We fabricated rapid single-flux-quantum RS flip-flop circuits with and without Y$_1$Ba$_2$Cu$_3$O$_{7-{\delta}}$(YBCO) ground plane. The circuit consists of SNS-type ramp-edge Josephson junctions that have cobalt-doped YBCO and Sr$_2$AITaO$_6$(SAT) for barrier layer and insulator layer, respectively. The fabricated Josephson junction showed a typical RSJ-like current-voltage(I-V) characteristics above 50K. We sucessfuly demonstrated RS flip-flop at temperatures around 50K. The RS flip-flop fabricated on ground plane showed more definite set and reset state in voltage-flux(V-${\phi}$) modulation curve for read SQUID, which may be attributed to a shielding effect of the YBCO ground plane.

  • PDF

Circuit Design of a Ternary Flip-Flop Using Ternary Logic Gates

  • Kim, Jong-Heon;Hwang, Jong-Hak;Park, Seung-Young;Kim, Heung-Soo
    • Proceedings of the IEEK Conference
    • /
    • 2000.07a
    • /
    • pp.347-350
    • /
    • 2000
  • We present the design of ternary flip-flop which is based on ternary logic so as to process ternary data. These flip-flops are fabricated with ternary voltage mode NOR, NAND, INVERTER gates. These logic gate circuits are designed using CMOS and obtained the characteristics of a lower voltage, a lower power consumption as compared to other gates. These circuits have been simulated with the electrical parameters of a standard 0.25 micron CMOS technology and 2.5 volts supply voltage. The Architecture of proposed ternary flip-flop is highly modular and well suited for VLSI implementation, only using ternary gates.

  • PDF

Low-area Duty Cycle Correction Circuit for Voltage-Controlled Ring Oscillator (전압제어 링 발진기용 저-면적 듀티 사이클 보정 회로)

  • Yu, Byeong-Jae;Cho, Hyun-Mook
    • Journal of Software Assessment and Valuation
    • /
    • v.15 no.1
    • /
    • pp.103-107
    • /
    • 2019
  • Recently, many technologies have been developed to realize low power high speed digital data communication and one of them is related to duty cycle correction. In this paper, a low-area duty cycle correction circuit for a voltage-controlled ring generator is proposed. The duty cycle correction circuit is a circuit that corrects the duty cycle using a 180 degree phase difference of a voltage controlled ring oscillator. The proposed low-area duty cycle circuit changes a conventional flip-flop to a true single phase clocking (TSPC) flip-flop And a low-area high-performance circuit is realized. By using TSPC flip-flop instead of general flip-flop, it is possible to realize low-area circuit compared to existing circuit, and it is expected to be used for high-performance circuit for low-power because it is easy to operate at high speed.

Circuit Design and Simulation Study of an RSFQ Switch Element for Optical Network Switch Applications (광 네트워크 스위치 응용을 위한 RSFQ Switch의 회로 설계 및 시뮬레이션)

  • 홍희송;정구락;박종혁;임해용;장영록;강준희;한택상
    • Progress in Superconductivity
    • /
    • v.5 no.1
    • /
    • pp.13-16
    • /
    • 2003
  • In this work, we have studied about an RSFQ (Rapid Single Flux Quantum) switch element. The circuit was designed, simulated, and laid out for mask fabrication. The switch cell was composed of a D flip-flop, a splitter, a confluence buffer, and a switch core. The switch core determined if the input data could pass to the output. “On” and o“off” controls in the switch core could be possible by utilizing an RS flip-flop. When a control pulse was input to the “on” port, the RS flip-flop was in the set state and passed the input pulses to the output port. When a pulse was input to the “off” port, the RS flip-flop was in the reset state and prevented the input pulses from transferring to the output port. We simulated and optimized the switch element circuit by using Xic, WRspice, and Julia. The minimum circuit margins in simulations were more than $\pm$20%. We also performed the mask layout of the circuit by using Xic and Lmeter.

  • PDF