• Title/Summary/Keyword: fixed-point theorem

Search Result 529, Processing Time 0.026 seconds

SOLVABILITY OF SOME NONLINEAR INTEGRO-DIFFERENTIAL EQUATIONS OF FRACTIONAL ORDER VIA MEASURE OF NONCOMPACTNESS

  • Dadsetadi, Somayyeh;Nouri, Kazem;Torkzadeh, Leila
    • The Pure and Applied Mathematics
    • /
    • v.27 no.1
    • /
    • pp.13-24
    • /
    • 2020
  • In this article, we investigate the solvability of nonlinear fractional integro-differential equations of the Hammerstein type. The results are obtained using the technique of measure of noncompactness and the Darbo theorem in the real Banach space of continuous and bounded functions in the interval [0, a]. At the end, an example is presented to illustrate the effectiveness of the obtained results.

A SYSTEM OF VARIATIONAL INCLUSIONS IN BANACH SPACES

  • Liu, Zeqing;Zhao, Liangshi;Hwang, Hong-Taek;Kang, Shin-Min
    • East Asian mathematical journal
    • /
    • v.26 no.5
    • /
    • pp.681-691
    • /
    • 2010
  • A system of variational inclusions with (A, ${\eta}$, m)-accretive operators in real q-uniformly smooth Banach spaces is introduced. Using the resolvent operator technique associated with (A, ${\eta}$, m)-accretive operators, we prove the existence and uniqueness of solutions for this system of variational inclusions and propose a Mann type iterative algorithm for approximating the unique solution for the system of variational inclusions.

Strong Convergence Theorems by Modified Four Step Iterative Scheme with Errors for Three Nonexpansive Mappings

  • JHADE, PANKAJ KUMAR;SALUJA, AMARJEET SINGH
    • Kyungpook Mathematical Journal
    • /
    • v.55 no.3
    • /
    • pp.667-678
    • /
    • 2015
  • The aim of this paper is to prove strong convergence theorem by a modified three step iterative process with errors for three nonexpansive mappings in the frame work of uniformly smooth Banach spaces. The main feature of this scheme is that its special cases can handle both strong convergence like Halpern type and weak convergence like Ishikawa type iteration schemes. Our result extend and generalize the result of S. H. Khan, Kim and Xu and many other authors.

STRONG CONVERGENCE THEOREMS FOR A QUASI CONTRACTIVE TYPE MAPPING EMPLOYING A NEW ITERATIVE SCHEME WITH AN APPLICATION

  • Chauhan, Surjeet Singh;Utreja, Kiran;Imdad, Mohammad;Ahmadullah, Md
    • Honam Mathematical Journal
    • /
    • v.39 no.1
    • /
    • pp.1-25
    • /
    • 2017
  • In this paper, we introduce a new scheme namely: CUIA-iterative scheme and utilize the same to prove a strong convergence theorem for quasi contractive mappings in Banach spaces. We also establish the equivalence of our new iterative scheme with various iterative schemes namely: Picard, Mann, Ishikawa, Agarwal et al., Noor, SP, CR etc for quasi contractive mappings besides carrying out a comparative study of rate of convergences of involve iterative schemes. The present new iterative scheme converges faster than above mentioned iterative schemes whose detailed comparison carried out with the help of different tables and graphs prepared with the help of MATLAB.

Application of Implicit Function Theorem to Existence of Solutions to Ordinary Differential Equations with Nonlocal Boundary Conditions, II (비국소 경계 조건들을 가진 상미분 방정식들의 근의 존재성에 음함수 정리들의 응용 II)

  • Do, Tae-Sug
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.5 no.4
    • /
    • pp.303-307
    • /
    • 2002
  • We consider the problem y"=a(x,y)(y-b), (0$$y(0)=0,\;y^{\prime}(1)=g(y({\xi}),\;y^{\prime}({\xi})),\;{\xi}$$ fixed in (0,1). This is a model of steady-state heat conduction in a rod when the heat flux at the end x=1 is determined by observation of the temperature and heat flux at some interior point ${\xi}$. We establish conditions sufficient for existence, uniqueness, and positivity of solutions.

  • PDF

AVERAGE SHADOWING PROPERTIES ON COMPACT METRIC SPACES

  • Park Jong-Jin;Zhang Yong
    • Communications of the Korean Mathematical Society
    • /
    • v.21 no.2
    • /
    • pp.355-361
    • /
    • 2006
  • We prove that if a continuous surjective map f on a compact metric space X has the average shadowing property, then every point x is chain recurrent. We also show that if a homeomorphism f has more than two fixed points on $S^1$, then f does not satisfy the average shadowing property. Moreover, we construct a homeomorphism on a circle which satisfies the shadowing property but not the average shadowing property. This shows that the converse of the theorem 1.1 in [6] is not true.

COMPOSITION OPERATORS ON UNIFORM ALGEBRAS AND THE PSEUDOHYPERBOLIC METRIC

  • Galindo, P.;Gamelin, T.W.;Lindstrom, M.
    • Journal of the Korean Mathematical Society
    • /
    • v.41 no.1
    • /
    • pp.1-20
    • /
    • 2004
  • Let A be a uniform algebra, and let $\phi$ be a self-map of the spectrum $M_A$ of A that induces a composition operator $C_{\phi}$, on A. It is shown that the image of $M_A$ under some iterate ${\phi}^n$ of \phi is hyperbolically bounded if and only if \phi has a finite number of attracting cycles to which the iterates of $\phi$ converge. On the other hand, the image of the spectrum of A under $\phi$ is not hyperbolically bounded if and only if there is a subspace of $A^{**}$ "almost" isometric to ${\ell}_{\infty}$ on which ${C_{\phi}}^{**}$ "almost" an isometry. A corollary of these characterizations is that if $C_{\phi}$ is weakly compact, and if the spectrum of A is connected, then $\phi$ has a unique fixed point, to which the iterates of $\phi$ converge. The corresponding theorem for compact composition operators was proved in 1980 by H. Kamowitz [17].

MULTI-ORDER FRACTIONAL OPERATOR IN A TIME-DIFFERENTIAL FORMAL WITH BALANCE FUNCTION

  • Harikrishnan, S.;Ibrahim, Rabha W.;Kanagarajan, K.
    • Korean Journal of Mathematics
    • /
    • v.27 no.1
    • /
    • pp.119-129
    • /
    • 2019
  • Balance function is one of the joint factors to determine fall in risk theory. It helps to moderate the progression and riskiness of falls for detecting balance and fall risk factors. Nevertheless, the objective measures for balance function require expensive equipment with the assessment of any expertise. We establish the existence and uniqueness of a multi-order fractional differential equations based on ${\psi}$-Hilfer operator on time scales with balance function. This class describes the dynamic of time scales derivative. Our tool is based on the Schauder fixed point theorem. Here, sufficient conditions for Ulam-stability are given.

A VISCOSITY TYPE PROJECTION METHOD FOR SOLVING PSEUDOMONOTONE VARIATIONAL INEQUALITIES

  • Muangchoo, Kanikar
    • Nonlinear Functional Analysis and Applications
    • /
    • v.26 no.2
    • /
    • pp.347-371
    • /
    • 2021
  • A plethora of applications from mathematical programmings, such as minimax, mathematical programming, penalization and fixed point problems can be framed as variational inequality problems. Most of the methods that used to solve such problems involve iterative methods, that is why, in this paper, we introduce a new extragradient-like method to solve pseudomonotone variational inequalities in a real Hilbert space. The proposed method has the advantage of a variable step size rule that is updated for each iteration based on previous iterations. The main advantage of this method is that it operates without the previous knowledge of the Lipschitz constants of an operator. A strong convergence theorem for the proposed method is proved by letting the mild conditions on an operator 𝒢. Numerical experiments have been studied in order to validate the numerical performance of the proposed method and to compare it with existing methods.

A NEW EXPLICIT EXTRAGRADIENT METHOD FOR SOLVING EQUILIBRIUM PROBLEMS WITH CONVEX CONSTRAINTS

  • Muangchoo, Kanikar
    • Nonlinear Functional Analysis and Applications
    • /
    • v.27 no.1
    • /
    • pp.1-22
    • /
    • 2022
  • The purpose of this research is to formulate a new proximal-type algorithm to solve the equilibrium problem in a real Hilbert space. A new algorithm is analogous to the famous two-step extragradient algorithm that was used to solve variational inequalities in the Hilbert spaces previously. The proposed iterative scheme uses a new step size rule based on local bifunction details instead of Lipschitz constants or any line search scheme. The strong convergence theorem for the proposed algorithm is well-proven by letting mild assumptions about the bifunction. Applications of these results are presented to solve the fixed point problems and the variational inequality problems. Finally, we discuss two test problems and computational performance is explicating to show the efficiency and effectiveness of the proposed algorithm.