DOI QR코드

DOI QR Code

SOLVABILITY OF SOME NONLINEAR INTEGRO-DIFFERENTIAL EQUATIONS OF FRACTIONAL ORDER VIA MEASURE OF NONCOMPACTNESS

  • Dadsetadi, Somayyeh (Department of Mathematics, Faculty of Mathematics, Statistics and Computer Sciences, Semnan University) ;
  • Nouri, Kazem (Department of Mathematics, Faculty of Mathematics, Statistics and Computer Sciences, Semnan University) ;
  • Torkzadeh, Leila (Department of Mathematics, Faculty of Mathematics, Statistics and Computer Sciences, Semnan University)
  • Received : 2018.12.07
  • Accepted : 2019.12.27
  • Published : 2020.02.29

Abstract

In this article, we investigate the solvability of nonlinear fractional integro-differential equations of the Hammerstein type. The results are obtained using the technique of measure of noncompactness and the Darbo theorem in the real Banach space of continuous and bounded functions in the interval [0, a]. At the end, an example is presented to illustrate the effectiveness of the obtained results.

Keywords

References

  1. A. Aghajani, Y. Jalilian & J.J. Trujillo: On the existence of solutions of fractional integro-differential equations. Fract. Calc. Appl. Anal. 15 (2012), no. 1, 44-69.
  2. B. Ahmad, S.K. Ntouyas, R.P. Agarwal & A. Alsaedi: Existence results for sequential fractional integro-differential equations with nonlocal multi-point and strip conditions. Bound. Value. Probl. 205 (2016), 1-16.
  3. O. Baghani, M. Gachpazan & H. Baghani: Existence, uniqueness and stability of solu- tions for a class of nonlinear integral equations under generalized Lipschitz condition. Indian J. Pure Appl. Math. 43 (2012), no. 4, 309-321. https://doi.org/10.1007/s13226-012-0019-y
  4. K. Balachandran & S. Kiruthika: Existence results for fractional integrodifferential equations with nonlocal condition via resolvent operators. Comput. Math. Appl. 62 (2011), no. 3, 1350-1358. https://doi.org/10.1016/j.camwa.2011.05.001
  5. K. Balachandran, S. Kiruthika & J.J. Trujillo: Existence results for fractional impulsive integrodifferential equations in Banach spaces. Commun. Nonlinear. Sci. numer. simulat. 16 (2011), no. 4, 1970-1977. https://doi.org/10.1016/j.cnsns.2010.08.005
  6. K. Balachandran & J.J. Trujillo: The nonlocal Cauchy problem for nonlinear fractional integrodifferential equations in Banach spaces. Nonlinear Anal-Theor. 72 (2010), no. 12, 4587-4593. https://doi.org/10.1016/j.na.2010.02.035
  7. J. Banas & K. Goebel: Measures of Noncompactness in Banach Spaces. Lect. Notes Pure Appl. Math. 60 Dekker, New York, 1980.
  8. J. Banas & T. Zajac: Solvability of a functional integral equation of fractional order in the class of functions having limits at innity. Nonlinear Analysis 71 (2009), 5491-5500. https://doi.org/10.1016/j.na.2009.04.037
  9. Y.K. Chang & J.J. Nieto: Existence of solutions for impulsive neutral integrodifferential inclusions with nonlocal initial conditions via fractional operators. 30 (2009), no. 3-4, 227-244. https://doi.org/10.1080/01630560902841146
  10. S. Dadsetadi & K. Nouri: Study on existence of solution for some fractional integro differential equations via the iterative process. Adv. Model. Anal. A 55 (2018), no. 2, 57-61.
  11. S. Das: Functional fractional calculus for system identication and controls. Springer-Verlag, Berlin, Heidelberg, 2008.
  12. M.R. Eslahchi, M. Dehghan & M. Parvizi: Application of collocation method for solving nonlinear fractional integro-differential equations. J. Comput. Appl. Math. 257 (2014), 105-128. https://doi.org/10.1016/j.cam.2013.07.044
  13. H. Gou & B. Li: Local and global existence of mild solution to impulsive fractional semilinear integro-differential equation with noncompact semigroup. Commun Nonlinear Sci. Numer. Simul. 42 (2017), 204-214. https://doi.org/10.1016/j.cnsns.2016.05.021
  14. J. Klafter, S.C. Lim & R. Metzler: Fractional dynamics in physics: Recent advances. World Scientic, Singapore, 2011.
  15. K. Maleknejad, K. Nouri & L. Torkzadeh: Study on multi-order fractional differential equations via operational matrix of hybrid basis functions. Bull. Iranian Math. Soc. 43 (2017), no. 2, 307-318.
  16. F.C. Meral, T.J. Royston & R. Magin: Fractional calculus in viscoelasticity: An experimental study. Commun Nonlinear Sci. Numer. Simul. 15 (2010), no. 4, 939-945. https://doi.org/10.1016/j.cnsns.2009.05.004
  17. K.S. Miller & B. Ross: An introduction to the fractional calculus and differential equations. John Wiley, New York, 1993.
  18. D. Nazari Susahab, S. Shahmorad & M. Jahanshahi: Efficient quadrature rules for solv- ing nonlinear fractional integro-differential equations of the Hammerstein type. Appl. Math. Model. 39 (2015), no. 18, 5452-5458. https://doi.org/10.1016/j.apm.2015.01.008
  19. K. Nouri, D. Baleanu & L. Torkzadeh: Study on application of hybrid functions to fractional differential equations. Iran. J. Sci. Technol. A 42 (2018), no. 3, 1343-1350. https://doi.org/10.1007/s40995-017-0224-y
  20. I. Podlubny: Fractional differential equations. Academic Press, San Diego, 1990.
  21. A. Saadatmandi & M. Dehghan: A Legendre collocation method for fractional integro- differential equations. J. Vib. Control 17 (2011), no. 13, 2050-2058. https://doi.org/10.1177/1077546310395977
  22. S. Samko, A.A. Kilbas & O. Marichev: Fractional integrals and derivatives: Theory and applications. Gordon and Breach, Amsterdam, 1993.
  23. F. Wang: Existence and uniqueness of solutions for a nonlinear fractional differential equation. J. Appl. Math. Comput. 39 (2012), no. 1-2, 53-67. https://doi.org/10.1007/s12190-011-0509-9
  24. L. Zhang, B. Ahmad, G. Wang & R.P. Agarwal: Nonlinear fractional integro-differential equations on unbounded domains in a Banach space. J. Comput. Appl. Math. 249 (2013), 51-56. https://doi.org/10.1016/j.cam.2013.02.010
  25. L. Zhu & Q. Fan: Numerical solution of nonlinear fractional-order Volterra integro-differential equations by SCW. Commun. Nonlinear Sci. Numer. Simul. 18 (2013), no. 5, 1203-1213. https://doi.org/10.1016/j.cnsns.2012.09.024
  26. L. Zhu & Q. Fan: Solving fractional nonlinear Fredholm integro-differential equations by the second kind Chebyshev wavelet. Commun. Nonlinear Sci. Numer. Simul. 17 (2012), no. 6, 2333-2341. https://doi.org/10.1016/j.cnsns.2011.10.014