• Title/Summary/Keyword: fitting software

Search Result 147, Processing Time 0.038 seconds

Study on Torque precision measuring System using Curve Fitting Algorithm (커브피팅 알고리즘이 적용된 토크 정밀 측정 시스템 개발에 관한 연구)

  • Lee, Ki Won;Ha, Jae Seung;Kang, Seung Soo
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.8 no.4
    • /
    • pp.1-11
    • /
    • 2012
  • This paper is the study on the development of a torque precision measuring system using the curve fitting algorithm. This system can be divided into the hardware part and the software part. The hardware part consists of the main base board, the DAQ(Data Aquisition) board and Calibration parts. The software part consists of the software filter module and the curve fitting algorithm module. We have tested the torque transducer including the strain gauge for 200 Nm range and have analyzed the data acquired with the curve fitting algorithm by using this system. The DAQ board converts the electric signal induced by the transducer to the digital value precisely by using the shunt calibration procedure. The main board including the curve fitting algorithm calculates the exact digital torque value by using the digital value from the DAQ board. In this study, we confirmed that the result of the appropriate high-order power-series polynomial function is more accurate than the result of the low-order power-series polynomial through the system.

Extraction of Geometric Primitives from Point Cloud Data

  • Kim, Sung-Il;Ahn, Sung-Joon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2010-2014
    • /
    • 2005
  • Object detection and parameter estimation in point cloud data is a relevant subject to robotics, reverse engineering, computer vision, and sport mechanics. In this paper a software is presented for fully-automatic object detection and parameter estimation in unordered, incomplete and error-contaminated point cloud with a large number of data points. The software consists of three algorithmic modules each for object identification, point segmentation, and model fitting. The newly developed algorithms for orthogonal distance fitting (ODF) play a fundamental role in each of the three modules. The ODF algorithms estimate the model parameters by minimizing the square sum of the shortest distances between the model feature and the measurement points. Curvature analysis of the local quadric surfaces fitted to small patches of point cloud provides the necessary seed information for automatic model selection, point segmentation, and model fitting. The performance of the software on a variety of point cloud data will be demonstrated live.

  • PDF

Surface Type Detection and Parameter Estimation in Point Cloud by Using Orthogonal Distance Fitting (최단거리 최소제곱법을 이용한 측정점군으로부터의 곡면 자동탐색)

  • Ahn, Sung-Joon
    • Korean Journal of Computational Design and Engineering
    • /
    • v.14 no.1
    • /
    • pp.10-17
    • /
    • 2009
  • Surface detection and parameter estimation in point cloud is a relevant subject in CAD/CAM, reverse engineering, computer vision, coordinate metrology and digital factory. In this paper we present a software for a fully automatic surface detection and parameter estimation in unordered, incomplete and error-contaminated point cloud with a large number of data points. The software consists of three algorithmic modules each for object identification, point segmentation, and model fitting, which work interactively. Our newly developed algorithms for orthogonal distance fitting(ODF) play a fundamental role in each of the three modules. The ODF algorithms estimate the model parameters by minimizing the square sum of the shortest distances between the model feature and the measurement points. We demonstrate the performance of the software on a variety of point clouds generated by laser radar, computer tomography, and stripe-projection method.

Evaluation of peak-fitting software for magnesium quantification through k0-instrumental neutron activation analysis

  • Dasari, Kishore B.;Cho, Hana;Jacimovic, Radojko;Park, Byung-Gun;Sun, Gwang-Min
    • Nuclear Engineering and Technology
    • /
    • v.54 no.2
    • /
    • pp.462-468
    • /
    • 2022
  • The selection and effective utilization of peak-fitting software for conventional gamma-ray spectrum analysis is significant for accurate determination of the mass fraction of elements, particularly in complex peak regions. Majority of the peak-fitting programs can derive similar peak characteristics for singlet peaks, but very few programs can deconvolute multi-peaks in a complex region. The deconvolution of multi-peaks requires special peak-fitting functions, such as left and right-skew distributions. In the this study, 843.76 keV (27Mg) peak area from the complex region (840 keV-850 keV) determined and compared using four different peak-fitting programs, namely, GammaVision, Genie2000, HyperLab, and HyperGam. The 843.76 keV peak interfered with 841.63 keV (152mEu) and 846.81 keV (56Mn). The total Mg concentration was determined through k0-instrumental neutron activation analysis by applying the isotopic interference correction factor 27Al(n,p)27Mg through the simultaneous determination of Al concentration. HyperLab and HyperGam peak-fitting programs reported consistent peak areas, and resultant concentrations agreed with the certified values of matrix-certified reference materials.

Fitting acyclic phase-type distributions by orthogonal distance

  • Pulungan, Reza;Hermanns, Holger
    • Advances in Computational Design
    • /
    • v.7 no.1
    • /
    • pp.37-56
    • /
    • 2022
  • Phase-type distributions are the distributions of the time to absorption in finite and absorbing Markov chains. They generalize, while at the same time, retain the tractability of the exponential distributions and their family. They are widely used as stochastic models from queuing theory, reliability, dependability, and forecasting, to computer networks, security, and computational design. The ability to fit phase-type distributions to intractable or empirical distributions is, therefore, highly desirable for many practical purposes. Many methods and tools currently exist for this fitting problem. In this paper, we present the results of our investigation on using orthogonal-distance fitting as a method for fitting phase-type distributions, together with a comparison to the currently existing fitting methods and tools.

Implementation of Fitting Software for Fully Implantable Middle Ear Hearing Device (완전 이식형 인공중이용 적합 소프트웨어의 구현)

  • Lee, J.W.;Jung, E.S.;Lim, H.K.;Lee, J.H.;Seong, K.W.;Kim, M.N.;Cho, J.H.
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.3 no.1
    • /
    • pp.21-25
    • /
    • 2009
  • Generally, fully implantable middle ear hearing device (F-IMEHD) is implanted under the skin nearby human temporal bone with all components including implantable microphone and vibration transducer. The microphone and transducer have different characteristic before and after implant. Fitting process is performed for this characteristic change of them and proper performance of hearing aids for each patient. Conventional hearing aids and partially implantable hearing aids, they have wired connector for fitting process. However in case of F-IMEHD, it is difficult this wired connection, because all components of F-IMEHD is implanted. In this paper, fitting software that can be apply wireless fitting hardware for F-IMEHD has been designed and implemented. It can find out proper fitting parameter reflecting characteristics of the microphone and transducer for patients who has difficulty in hearing.

  • PDF

Comparison of Clinical Usefulness of Program-Assisted and Real Ear Measurement-Assisted Hearing Aids Fitting (프로그램과 실이 측정을 이용한 보청기 적합의 임상적 유용성의 비교)

  • Chang, Young-Soo;Jung, Hye Im;Cho, Yang-Sun
    • Korean Journal of Otorhinolaryngology-Head and Neck Surgery
    • /
    • v.61 no.12
    • /
    • pp.663-668
    • /
    • 2018
  • Background and Objectives The main objectives of this study were to determine the clinical usefulness of the program-assisted and real ear measurement (REM)-assisted fitting of hearing aids. Subjects and Method Fifteen participants with moderate to moderately severe hearing loss were enrolled in this study. Objective and subjective fitting results were assessed to compare the benefits between the program-assisted fitting (using a software fitting program) and the REM-assisted fitting. Real ear insertion gain (REIG), sound-field audiometry using warble tone, and Korean Hearing in Noise Test (K-HINT) were performed as objective tests. Sound quality rating was performed as a subjective test. Results In the program fitting, 48.89% of fitting points failed to come within ${\pm}10dB$ of the REIG target. In the REM fitting, however, the percentage of failure significantly decreased to 23.33% (p=0.013). In K-HINT test, the reception threshold for speech in quiet situation significantly decreased from 50.1 dB HL with the program fitting to 44.7 dB HL after the REM fitting (p<0.001). In front noise condition, signal-to-noise ratio improved from 4.53 dB to 3.50 dB with the REM fitting without statistical significance (p=0.099). In the sound quality rating, the REM fitting ($4.27{\pm}0.56$) showed a significantly better sound quality ratings than the program fitting ($3.69{\pm}0.74$) (p=0.017). Conclusion The REM fitting showed better results in both subjective and objective measurements than the program fitting.

Nano Digital Hearing Aid Firmware and Fitting Software Development (나노 디지털 보청기 펌웨어와 휘팅 소프트웨어 개발)

  • Jarng, Soon-Suck
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.49 no.3
    • /
    • pp.69-74
    • /
    • 2012
  • This paper shows the results about field operating digital hearing aids which protect the ears of the battle field soldiers from explosive sound and minimize the difficulty of mutual communication during the battle. The essence of the hearing aid is in its signal compression technology in which soft sound is amplified while rapidly increased explosive sound is attenuated. This nonlinear compression technology can be applied for the protection of the ears of the battle field soldiers. As a core part of the hearing aid, when a new DSP IC chip is launched, the modified firmware and fitting software is developed for adaption. Ezairo 5910 which was recently launched by DSP factory in Canada was used for the development of the firmware of the hearing aid.

Development of an Analytic Software Using Pencil Beam Scanning Proton Beam

  • Jeong, Seonghoon;Yoon, Myonggeun;Chung, Kwangzoo;Han, Youngyih;Lim, Do Hoon;Choi, Doo Ho
    • Progress in Medical Physics
    • /
    • v.28 no.1
    • /
    • pp.22-26
    • /
    • 2017
  • We have developed an analytic software that can easily analyze the spot position and width of proton beam therapy nozzles in a periodic quality assurance. The developed software consists of an image processing method that conducts an analysis using center-of-spot geometry and a Gaussian fitting method that conducts an analysis through Gaussian fitting. By using the software, an analysis of 210 proton spots with energies 150, 190, and 230 MeV showed a deviation of approximately 3% from the mean. The software we developed to analyze proton spot positions and widths provides an accurate analysis and reduces the time for analysis.