• Title/Summary/Keyword: finitistic dimension

Search Result 2, Processing Time 0.014 seconds

GORENSTEIN QUASI-RESOLVING SUBCATEGORIES

  • Cao, Weiqing;Wei, Jiaqun
    • Journal of the Korean Mathematical Society
    • /
    • v.59 no.4
    • /
    • pp.733-756
    • /
    • 2022
  • In this paper, we introduce the notion of Gorenstein quasiresolving subcategories (denoted by 𝒢𝒬𝓡𝒳 (𝓐)) in term of quasi-resolving subcategory 𝒳. We define a resolution dimension relative to the Gorenstein quasi-resolving categories 𝒢𝒬𝓡𝒳 (𝓐). In addition, we study the stability of 𝒢𝒬𝓡𝒳 (𝓐) and apply the obtained properties to special subcategories and in particular to modules categories. Finally, we use the restricted flat dimension of right B-module M to characterize the finitistic dimension of the endomorphism algebra B of a 𝒢𝒬𝒳-projective A-module M.

(𝓕, 𝓐)-GORENSTEIN FLAT HOMOLOGICAL DIMENSIONS

  • Becerril, Victor
    • Journal of the Korean Mathematical Society
    • /
    • v.59 no.6
    • /
    • pp.1203-1227
    • /
    • 2022
  • In this paper we develop the homological properties of the Gorenstein (𝓛, 𝓐)-flat R-modules 𝓖𝓕(𝓕(R),𝓐) proposed by Gillespie, where the class 𝓐 ⊆ Mod(Rop) sometimes corresponds to a duality pair (𝓛, 𝓐). We study the weak global and finitistic dimensions that come with the class 𝓖𝓕(𝓕(R),𝓐) and show that over a (𝓛, 𝓐)-Gorenstein ring, the functor - ⊗R - is left balanced over Mod(Rop) × Mod(R) by the classes 𝓖𝓕(𝓕(Rop),𝓐) × 𝓖𝓕(𝓕(R),𝓐). When the duality pair is (𝓕(R), 𝓕𝓟Inj(Rop)) we recover the G. Yang's result over a Ding-Chen ring, and we see that is new for (Lev(R), AC(Rop)) among others.