DOI QR코드

DOI QR Code

(𝓕, 𝓐)-GORENSTEIN FLAT HOMOLOGICAL DIMENSIONS

  • Becerril, Victor (Centro de Ciencias Matematicas Universidad Nacional Autonoma de Mexico)
  • Received : 2022.03.29
  • Accepted : 2022.07.15
  • Published : 2022.11.01

Abstract

In this paper we develop the homological properties of the Gorenstein (𝓛, 𝓐)-flat R-modules 𝓖𝓕(𝓕(R),𝓐) proposed by Gillespie, where the class 𝓐 ⊆ Mod(Rop) sometimes corresponds to a duality pair (𝓛, 𝓐). We study the weak global and finitistic dimensions that come with the class 𝓖𝓕(𝓕(R),𝓐) and show that over a (𝓛, 𝓐)-Gorenstein ring, the functor - ⊗R - is left balanced over Mod(Rop) × Mod(R) by the classes 𝓖𝓕(𝓕(Rop),𝓐) × 𝓖𝓕(𝓕(R),𝓐). When the duality pair is (𝓕(R), 𝓕𝓟Inj(Rop)) we recover the G. Yang's result over a Ding-Chen ring, and we see that is new for (Lev(R), AC(Rop)) among others.

Keywords

Acknowledgement

The author thanks to professors Marco A. Perez and Raymundo Bautista for suggestions and nice discussions about this paper.

References

  1. F. A. A. Almahdi, E. M. Bouba, and M. Tamekkante, On w-FI-flat and w-FI-injective modules, Ann. Univ. Ferrara 68 (2022), 91-102. https://doi.org/10.1007/s11565-022-00388-8
  2. M. Auslander and M. Bridger, Stable Module Theory, American Mathematical Soc., 1969.
  3. V. Becerril, Relative global Gorenstein dimensions, J. Alg. Appl. (2022) https://doi.org/10.1142/S0219498822502085
  4. V. Becerril, O. Mendoza, and V. Santiago, Relative Gorenstein objects in abelian categories, Comm. Algebra 49 (2021), no. 1, 352-402. https://doi.org/10.1080/00927872.2020.1800023
  5. D. Bennis, Rings over which the class of Gorenstein flat modules is closed under extensions, Comm. Algebra 37 (2009), no. 3, 855-868. https://doi.org/10.1080/ 00927870802271862
  6. D. Bravo, J. Gillespie, and M. Hovey, The stable module category of a general ring, Preprint, 2014, arXiv:1405.5768
  7. D. Bravo and M. A. Perez, Finiteness conditions and cotorsion pairs, J. Pure Appl. Algebra 221 (2017), no. 6, 1249-1267. https://doi.org/10.1016/j.jpaa.2016.09.008
  8. X.-W. Chen, Homotopy equivalences induced by balanced pairs, J. Algebra 324 (2010), no. 10, 2718-2731. https://doi.org/10.1016/j.jalgebra.2010.09.002
  9. E. E. Enochs and O. M. G. Jenda, Balanced functors applied to modules, J. Algebra 92 (1985), no. 2, 303-310. https://doi.org/10.1016/0021-8693(85)90122-X
  10. E. E. Enochs and O. M. G. Jenda, Copure injective resolutions, flat resolvents and dimensions, Comment. Math. Univ. Carolin. 34 (1993), no. 2, 203-211.
  11. E. E. Enochs and O. M. G. Jenda, Gorenstein balance of Hom and tensor, Tsukuba J. Math. 19 (1995), no. 1, 1-13. https://doi.org/10.21099/tkbjm/1496162796
  12. E. E. Enochs and O. M. G. Jenda, Relative homological algebra, De Gruyter Expositions in Mathematics, 30, Walter de Gruyter & Co., Berlin, 2000. https://doi.org/10.1515/ 9783110803662
  13. S. Estrada, A. Iacob, and M. A. Perez, Model structures and relative Gorenstein flat modules and chain complexes, in Categorical, homological and combinatorial methods in algebra, 135-175, Contemp. Math., 751, Amer. Math. Soc., RI, 2020. https://doi.org/10.1090/conm/751/15084
  14. D. J. Fieldhouse, Character modules, dimension and purity, Glasgow Math. J. 13 (1972), 144-146. https://doi.org/10.1017/S0017089500001567
  15. J. Gillespie, Model structures on modules over Ding-Chen rings, Homology Homotopy Appl. 12 (2010), no. 1, 61-73. http://projecteuclid.org/euclid.hha/1296223822 https://doi.org/10.4310/HHA.2010.v12.n1.a6
  16. J. Gillespie, On Ding injective, Ding projective and Ding flat modules and complexes, Rocky Mountain J. Math. 47 (2017), no. 8, 2641-2673. https://doi.org/10.1216/RMJ2017-47-8-2641
  17. J. Gillespie, AC-Gorenstein rings and their stable module categories, J. Aust. Math. Soc. 107 (2019), no. 2, 181-198. https://doi.org/10.1017/s1446788718000290
  18. J. Gillespie, Duality pairs and stable module categories, J. Pure Appl. Algebra 223 (2019), no. 8, 3425-3435. https://doi.org/10.1016/j.jpaa.2018.11.010
  19. J. Gillespie and A. Iacob, Duality pairs, generalized Gorenstein modules, and Ding injective envelopes, arXiv preprint arXiv:2105.01770, 2021.
  20. H. Holm and P. Jorgensen, Cotorsion pairs induced by duality pairs, J. Commut. Algebra 1 (2009), no. 4, 621-633. https://doi.org/10.1216/JCA-2009-1-4-621
  21. A. Iacob, Projectively coresolved Gorenstein flat and ding projective modules, Comm. Algebra 48 (2020), no. 7, 2883-2893. https://doi.org/10.1080/00927872.2020.1723612
  22. C. U. Jensen, On the vanishing of $\lim_{\leftarrow}^{(i)}$, J. Algebra 15 (1970), 151-166. https://doi.org/10.1016/0021-8693(70)90071-2
  23. J. J. Rotman, An Introduction to Homological Algebra, second edition, Universitext, Springer, New York, 2009. https://doi.org/10.1007/b98977
  24. J. Wang and Z. Di, Relative Gorenstein rings and duality pairs, J. Algebra Appl. 19 (2020), no. 8, 2050147, 22 pp. https://doi.org/10.1142/S0219498820501479
  25. Z. Wang, G. Yang, and R. Zhu, Gorenstein flat modules with respect to duality pairs, Comm. Algebra 47 (2019), no. 12, 4989-5006. https://doi.org/10.1080/00927872.2019.1609011
  26. G. Yang, Homological properties of modules over Ding-Chen rings, J. Korean Math. Soc. 49 (2012), no. 1, 31-47. https://doi.org/10.4134/JKMS.2012.49.1.031
  27. X. Yang, Gorenstein categories G(X, Y, Z) and dimensions, Rocky Mountain J. Math. 45 (2015), no. 6, 2043-2064. https://doi.org/10.1216/RMJ-2015-45-6-2043