• Title/Summary/Keyword: finite-element modeling

Search Result 2,200, Processing Time 0.032 seconds

Filing Experiments and Structural Analysis of Human Body (사격시험 및 인체구조해석)

  • Lee, Se-Hoon;Choi, Young-Jin;Choi, Eui-Jung;Chae, Je-Wook;Lee, Young-Shin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.7 s.262
    • /
    • pp.764-776
    • /
    • 2007
  • On the human-rifle system, the human body is affected by the firing impact. The firing impact will reduce the firing accuracy and change the initial shooting posture. Therefore the study of biomechanical characteristics using human-rifle modeling and numerical investigation is needed. The musculoskeletal model is developed by finite element method using beam and spar elements. In this study structural analysis has been performed in order to investigate the human body impact by firing of 5.56mm small caliber machine gun. The firing experiments with the standing shooting postures were performed to verify analytical results. The result if this study shows analytical displacements of the human-rifle system and experimental displacements of the real firing. As the results, the analytical displacement and stress of human body are presented.

A Study on the Optimal Design of Mechanical Molding Press for Semiconductor Packaging (반도체 패키징용 기계식 프레스의 최적설계에 관한 연구)

  • Kim, Moon-Ki
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.3
    • /
    • pp.356-363
    • /
    • 2013
  • Mechanical molding press which is used for transformation process during semiconductor manufacturing process has structural deformations by pressure. If these deformations have over limit range, life of the press itself can be reduced and it will be exerted on a bad effect for quality of the semiconductor. In this research, the main plates and links of a press are analyzed in relation to the structural deformations caused by pressure excluding thermal deformations. After modifying the modeling, the analysis is performed again to determine optimal design of the press, and this design is introduced to ensure that most of the stresses on the main plates are within safe allowable limits. As a result, an optimal design method for the structure is investigated to produce the desired pressure even when the size of the main structure is minimized.

Development of Tubular Shaft for Reduction of Booming Noise in Vehicle Interior (차량 부밍 소음 저감을 위한 중공축 개발)

  • 고강호;국형석;이재형
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.1
    • /
    • pp.203-208
    • /
    • 2002
  • In order to reduce the booming noise caused by first bending mode of a drive shaft, this paper proposes a simulation program for prediction of the bending mode frequency of any tubular shaft. This program consists of a pre-processor for modeling of geometrical shape of the drive shaft with boundary conditions of various joints, a processor for constructing of global finite element matrices using beam elements and an eigen-solver based on MATLAB program. Using this simulation program, the effective and accurate FE model far a shaft attached to vehicle can be obtained by aid of database for stiffness of each joint. Thus the resonance frequencies and mode shapes of a shaft can be calculated accurately. Because the effect of the resonance on interior noise can be verified, more improved shaft will be proposed at the early stage of design.

Analysis for the Thermal Behavior of Synchronous Linear Motor by EEM (FEM을 이용한 동기식 리니어모터 열특성의 해석)

  • Eun, In-Ung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.8
    • /
    • pp.1461-1471
    • /
    • 2002
  • Linear motor has a lot of advantages in comparison with conventional feed mechanisms: high velocity, high acceleration, good positioning accuracy and a long lifetime. An important disadvantage of linear motor is its high power loss and heating up of motor and neighboring machine components in operation. For the application of the linear motors to precision machine tools an effective cooling method and thermal optimizing measures are required. In this paper Finite-Element-Method for the thermal behavior of synchronous linear motor is introduced, which is useful for the design and manufacturing of linear motors. By modeling the linear motor the orthotropic physical properties of the sheet metal and windings were considered and convective coefficient in the water cooler and to the surroundings was defined by analytical and experimental method. The calculated isothermal lines could analyze the heat flow in the linear motor.

Development of an Accurate Numerical Model for Density-Dependent Groundwater Flow and Solute Transport (밀도가 변하는 지하수흐름과 용질의 수송을 위한 정확한 수치모델의 개발)

  • Park, Nam-Sik
    • Journal of Korea Water Resources Association
    • /
    • v.30 no.6
    • /
    • pp.753-759
    • /
    • 1997
  • A new numerical model was doveloped to simulate density-dependent ground water flow and solute transport. Accuracy of a numerical model depends upon how well it simulates advection dominant situations because numerical oscillations can spoil solutions for these situations. Nonlinear oscillation-absorption finite element method. based on the variational principle, was employed. Unlike previous numerical models, this model can easily be expanded for more complex situations. Accuracy of the model is evaluated by comparing with analytical solutions and results of other numerical model.

  • PDF

Modeling of a bearingless motor using distributed magnetic circuit (분산 자기 회로를 이용한 베어링리스 모터의 모델링)

  • 박창용;박수진;노명규
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.212-216
    • /
    • 2004
  • Bearingless motors are the rotational electric machine which utilize a common magnetic structure for rotation and magnetic suspension. Since the bearing function is combined with the motor, the shaft length can be shortened resulting in higher critical speeds. Relationship between suspension force and current of bearingless motor is clearly derived by prior research. However, relationship between displacement of rotor and suspension force is not precisely defined. In this paper, we present model of bearingless motor describing the radial force variation due to the movement of the rotor. Using a distributed magnetic circuit and maxwell stress tensor, we derived a mathematical expression for the radial force. For a slotless bearingless motor, we are able to find an analytical model presented in the form of stiffness. For a slotted motor, we can compute the stiffness by semi-analytical analysis. This model is validated by a finite-element-analysis.

  • PDF

Plan IE Design Of Extradosed Bridge Supported by Single Plane Cables (일면지지식 Extradosed교의 계획 및 설계)

  • 이종대;이두화;권소진;김종수;손준상
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.615-620
    • /
    • 2001
  • The aim of this paper is to open up a relatively new type in bridge engineering by introducing plan and design of extradosed bridge which is implemented in Sungnam-Janghowon T/K project. The topic encompasses parametric study including the behavior of the bridge relevant to the cable layout, the distance from pier table to the first cable's location, the height of pylon, the stiffness of cross section and wind vibration to ascertain sectional type of bridge and span length. For the purpose of the knowledge base presented here, the important feature of design is recommended such as modeling method, camber control, finite element analysis and heat hydration of pier table. We can verify the issue related to the characteristics of extradosed bridge as a result of study and design endeavor.

  • PDF

Fabrication and Simulation of Displacement Properties of Ultrasonic Generator Handpiece (초음파 절삭기 핸드피스부 제작 및 변위 특성 시뮬레이션)

  • Kim, Seung-Won;Yoo, Ju-Hyun;Lee, Jie-Young
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.3
    • /
    • pp.152-155
    • /
    • 2018
  • Ultrasonic wave technologies have been widely used in ultrasonic washing machines, ultrasonic surgery, ultrasonic welding machines, ultrasonic sensors, and medical instruments. Ultrasonic surgery can be realized through the cavitation effect of ultrasonic waves. In this study, piezoelectric ceramics were manufactured to achieve the optimum design of a piezoelectric vibrator in a handheld generator for ultrasonic surgery. The best specimen showed the excellent piezoelectric properties of kp=0.624, Qm=1,531, and $d_{33}=356pC/N$. Numerical modeling based on the finite element method was performed to find the resonance frequency, the anti-resonance frequency, and the displacement properties of the handheld ultrasonic generator. Maximum displacement was observed in the six-step piezoelectric vibrator at $6.36{\mu}m$.

A Study on the Transient Analysis of 2[MVA] Mold Transformer for Electric Field (2[MVA] 배전용 몰드변압기의 과도전계해석에 관한 연구)

  • Jeon, Mun-Ho;Kim, Chang-Eob
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.12
    • /
    • pp.171-176
    • /
    • 2010
  • This paper presents the electric field for 22.9[kV]/380[V], 2[MVA] mold transformer are analysed using FEM(finite element method). The electric field was calculated for the voltage applied to the transformer. Then, it is analysed that the maximum electric field occurred between high voltage turns. Capacitance is calculated with energy method. Surge impulse test simulation is studied by modeling circuit with capacitance and inductance. This paper obtain the result that is about influence of electric field in distribution mold transformer adopted.

Novel Iron Loss Modeling of the BLDC Motor for Fuel Pump by Considering Non Sinusoidal Distributed Magnetic Flux Density Effect in Stator Core (BLDC 전동기 고정자 코어의 비정현적인 자속밀도 분포특성를 고려하기 위한 철손 모델링에 대한 연구)

  • Ikram, Junaid;Junaid, Qudsia;Hwang, Kyu-Yun;Kwon, Byung-Il
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.758_759
    • /
    • 2009
  • In the design and analysis of electric machines the precise calculation of iron loss has incredible significance. It is tough to foresee iron losses precisely in machines due to distribution of non sinusoidal flux density. It is necessary to approximate the iron losses for the precise computation of efficiency. This paper presents a novel approach for the prediction of iron losses of the brushless dc (BLDC) motors by considering the effects of minor hysteresis loops in the simplified model. The novel iron loss model results are compared with the simplified model and with finite element method (FEM).

  • PDF