• 제목/요약/키워드: finite volume scheme

검색결과 333건 처리시간 0.027초

Control Volume Formulation Method를 사용한 GaAs MESFET의 2차원 수치해석 (Two-Dimensional Numerical Simulation of GaAs MESFET Using Control Volume Formulation Method)

  • 손상희;박광민;박형무;김한구;김형래;박장우;곽계달
    • 대한전자공학회논문지
    • /
    • 제26권1호
    • /
    • pp.48-61
    • /
    • 1989
  • 본 논문에서는 게이트의 길이가 0.7${\mu}m$인 n형 GaAs MESFET를 2차원적으로 수치 해석하였으며, 이동도를 국부 전계의 함수로 취하는 드리프트 -확산 모델을 사용하였다. 이산화 방법으로는 종래에 사용되던 FDM(finite difference method), FEM(finite element method)을 사용치 아낳고 Control-Volume Formulation을 사용하였으며, numerical scheme으로는 기존의 hybrid scheme이나 upwind scheme 대신에 exponential scheme과 거의 근사한 power-law scheme을 사용하였다. 이때 드리프트 속도와 확산 속도의 비율을 나타내는 Peclet number의 개념을 사용하였으며, 이 개념을 사용하여 control volume의 경계에서 numerical scheme을 고려한 전류식을 제안하였다. 앞에서 고려한 모델들과 수치해석 방법을 사용하여 시뮬레이션한 I-V 특성은 기존 노문의 결과와 일치하였다. 따라서 본 논문의 결과가 GaAs MESFET를 위한 유용한 2차원 시뮬레이터가 될 수 있음을 확인하였다. 또한 I-V 특성외에 채널 밑바닥에서이 속도 및 전계 분포를 통해 드리프트-확산 모델을 고려한 경우에 발생하는 속도 포화의 메카니즘을 제시했고, Dipole의 발생위치 및 발생 원인과 드레인 전류와의 관계 등에 대해서도 제시했다.

  • PDF

하이브리드 기법을 이용한 고정된 해양구조물에 작용하는 파랑하중에 관한 수치 시뮬레이션 (Numerical Simulation of Wave Forces acting on Fixed Offshore Structures Using Hybrid Scheme)

  • 남보우;홍사영;김용환
    • 한국해양공학회지
    • /
    • 제24권6호
    • /
    • pp.16-22
    • /
    • 2010
  • In this paper, the diffraction problems for fixed offshore structures are solved using a hybrid scheme. In this hybrid scheme, potential-based solutions and the Navier-Stokes-based finite volume method (FVM) with a volume-of-fluid (VOF) method are combined. We introduce a buffer zone for efficient wave-making and damping. In this buffer zone, the near field solution from FVM-VOF is gradually changed to Stokes' 2nd order wave solutions. Three different models, including the truncated cylinder, sphere, and wigleyIII model, are numerically investigated in regular waves with a wave steepness of 1/30. The efficiency and accuracy of the hybrid scheme are numerically validated from results using different domain sizes and buffer zones. The wave exciting forces from the FVM-VOF simulations are compared with experiments and potential-based solutions from the higher-order boundary element method (HOBEM). This comparison shows good agreement between the hybrid scheme and potential-based solutions.

비정렬 유한체적법을 위한 QUICK법의 수정 (Modification of QUICK Scheme for Unstructured Grid Finite Volume Method)

  • 강동진;배상수
    • 대한기계학회논문집B
    • /
    • 제24권9호
    • /
    • pp.1148-1156
    • /
    • 2000
  • The QUICK scheme for convection terms is modified for unstructured finite volume method by using linear reconstruction technique and validated through the computation of two well defined laminar flows. It uses two upstream grid points and one downstream grid point in approximating the convection terms. The most upstream grid point is generated by considering both the direction of flow and local grid line. Its value is calculated from surrounding grid points by using a linear construction method. Numerical error by the modified QUICK scheme is shown to decrease about 2.5 times faster than first order upwind scheme as grid size decreases. Computations are also carried out to see effects of the skewness and irregularity of grid on numerical solution. All numerical solutions show that the modified QUICK scheme is insensitive to both the skewness and irregularity of grid in terms of the accuracy of solution.

Numerical Prediction of Turbulent Flow in Bare Rod Bundles Using Control Volume Based Finite Element Method

  • Im, In-Young;Cheong, Jong-Sik
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1995년도 추계학술발표회논문집(1)
    • /
    • pp.480-486
    • /
    • 1995
  • Turbulent flow field in a subchannel of bare rod bundles has been numerically simulated using the control volume based finite element method. Launder & Ying model of Reynolds stress and Lam & Bremhorst low-Reynolds number model are implemented in k-$\varepsilon$ equations and momentum equations. Secondary flows are simulated using the stream function and vorticity approach. The control volume based finite element method enable to use the upwind scheme (donor cell scheme). Sensitivity of the constants in the models are studied, and proper values are found to get the close result to the measured flow distributions.

  • PDF

VOF 방법에 의한 이동하는 자유표면이 존재하는 유동의 유한요소 해석 (Finite element analysis of flow with moving free surface by volume of fluid method)

  • 신수호;이우일
    • 대한기계학회논문집B
    • /
    • 제21권9호
    • /
    • pp.1230-1243
    • /
    • 1997
  • A numerical technique for simulating incompressible viscous flow with free surface is presented. The flow field is obtained by penalty finite element formulation. In this work, a modified volume of fluid (VOF) method which is compatible with 4-node element is proposed to track the moving free surface. This scheme can be applied to irregular mesh system, and can be easily extended to three dimensional geometries. Numerical analyses were done for two benchmark examples, namely the broken dam problem and the solitary wave propagation problem. The numerical results were in close agreement with the existing data. Illustrative examples were studied to show the effectiveness of the proposed numerical scheme.

Flood Impact Pressure Analysis of Vertical Wall Structures using PLIC-VOF Method with Lagrangian Advection Algorithm

  • Phan, Hoang-Nam;Lee, Jee-Ho
    • 한국전산구조공학회논문집
    • /
    • 제23권6호
    • /
    • pp.675-682
    • /
    • 2010
  • The flood impact pressure acting on a vertical wall resulting from a dam-breaking problem is simulated using a navier-Stokes(N-S) solver. The N-S solver uses Eulerian Finite Volume Method(FVM) along with Volume Of Fluid(VOF) method for 2-D incompressible free surface flows. A Split Lagrangian Advection(SLA) scheme for VOF method is implemented in this paper. The SLA scheme is developed based on an algorithm of Piecewise Linear Interface Calculation(PLIC). The coupling between the continuity and momentum equations is affected by using a well-known Semi-Implicit Method for Pressure-Linked Equations (SIMPLE) algorithm. Several two-dimensional numerical simulations of the dam-breaking problem are presented to validate the accuracy and demonstrate the capability of the present algorithm. The significance of the time step and grid resolution are also discussed. The computational results are compared with experimental data and with computations by other numerical methods. The results showed a favorable agreement of water impact pressure as well as the global fluid motion.

A FINITE DIFFERENCE/FINITE VOLUME METHOD FOR SOLVING THE FRACTIONAL DIFFUSION WAVE EQUATION

  • Sun, Yinan;Zhang, Tie
    • 대한수학회지
    • /
    • 제58권3호
    • /
    • pp.553-569
    • /
    • 2021
  • In this paper, we present and analyze a fully discrete numerical method for solving the time-fractional diffusion wave equation: ∂βtu - div(a∇u) = f, 1 < β < 2. We first construct a difference formula to approximate ∂βtu by using an interpolation of derivative type. The truncation error of this formula is of O(△t2+δ-β)-order if function u(t) ∈ C2,δ[0, T] where 0 ≤ δ ≤ 1 is the Hölder continuity index. This error order can come up to O(△t3-β) if u(t) ∈ C3 [0, T]. Then, in combinination with the linear finite volume discretization on spatial domain, we give a fully discrete scheme for the fractional wave equation. We prove that the fully discrete scheme is unconditionally stable and the discrete solution admits the optimal error estimates in the H1-norm and L2-norm, respectively. Numerical examples are provided to verify the effectiveness of the proposed numerical method.

A UNIFIED STABILIZED FINITE VOLUME METHOD FOR STOKES AND DARCY EQUATIONS

  • Boukabache, Akram;Kechkar, Nasserdine
    • 대한수학회지
    • /
    • 제56권4호
    • /
    • pp.1083-1112
    • /
    • 2019
  • In this paper, we present and analyze a cell-centered collocated finite volume scheme for incompressible flows to compute solutions simultaneous to Stokes and Darcy equations by applying a pressure jump stabilization term to avoid locking. We prove that the new stabilized FV formulation satisfies a discrete inf-sup condition and error estimates for both problems. Finally, we present some numerical examples confirming this analysis.

비정렬 격자 유한체적법을 이용한 삼차원 자유표면 유동 해석 코드의 개발 (Development of a Solver for 3-D Flows with Free Surface using the Finite Volume Method on Unstructured Grids)

  • 임중혁;백제현
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.910-915
    • /
    • 2003
  • A Navier-Stokes equation solver for incompressible viscous flows with free surface is developed and tested. This is based upon a fractional time step method and a non-staggered finite volume formulation for unstructured meshes. For time advancement scheme, Adams -Bashforth method for convective term and Crank-Nicolson method for diffusive term are applied. The interface between two fluids with different fluid properties is tracked with Piecewise Linear Interface Calculation(PLIC) Volume-of-Fluid(VOF) methods. Computational results are presented for some test problems: the broken dam, the sloshing in a rectangular tank, the filling of a cylindrical tank.

  • PDF

Direct Simulations of Aerodynamic Sounds by the Finite Difference and Finite Volume Lattice Boltzmann Methods

  • Tsutahara, Michihisa;Tamura, Akinori;Motizuki, Kazumasa;Kondo, Takamasa
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2006년도 추계 학술대회논문집
    • /
    • pp.22-25
    • /
    • 2006
  • Direct simulations of aerodynamic sound, especially sound emitted by rapidly rotating elliptic cylinder by the finite difference lattice Boltzmann method (FDLBM). Effect of pile-fabrics for noise reduction is also studied by the finite volume LBM (FVLBM) using an unstructured grid. Second order time integration and third order upwind scheme are shown to be enough for these simulations. Sound sources are detected to be doublets for both cases. For the elliptic cylinder, the doublet is generated in the interaction between the vortex and the edge. For the circular cylinders, they are generated synchronizing with the Karman vortex street, and it is also shown that the pile-fabrics covering the surface of the cylinder reduces the strength of the source.

  • PDF