FIGURE 1. Approximate velocity vectors and pressure elevation for Stokes with µ = 0.1.
FIGURE 2. Approximate velocity vectors and pressure elevation for Darcy with α = 100.
FIGURE 3. Convergence history for Stokes (left) µ = 0.1 andfor Darcy (right) with α = 100.
FIGURE 4. Approximate velocity vectors and pressure elevation for Stokes with µ = 1.
FIGURE 5. Approximate velocity vectors and pressure eleva-tion for Darcy with α = 10.
FIGURE 6. Convergence history for Stokes (left) µ = 1 and forDarcy (right) with α = 10.
References
- S. Badia and R. Codina, Unified stabilized finite element formulations for the Stokes and the Darcy problems, SIAM J. Numer. Anal. 47 (2009), no. 3, 1971-2000. https://doi.org/10.1137/08072632X
- E. Burman and P. Hansbo, Stabilized Crouzeix-Raviart element for the Darcy-Stokes problem, Numer. Methods Partial Differential Equations 21 (2005), no. 5, 986-997. https://doi.org/10.1002/num.20076
- M. Cui and X. Ye, Unified analysis of finite volume methods for the Stokes equations, SIAM J. Numer. Anal. 48 (2010), no. 3, 824-839. https://doi.org/10.1137/090780985
- R. Eymard, T. Gallouet, and R. Herbin, Finite volume methods, in Handbook of numerical analysis, Vol. VII, 713-1020, Handb. Numer. Anal., VII, North-Holland, Amsterdam, 2000.
- R. Eymard, R. Herbin, and J. C. Latche, On a stabilized colocated finite volume scheme for the Stokes problem, M2AN Math. Model. Numer. Anal. 40 (2006), no. 3, 501-527. https://doi.org/10.1051/m2an:2006024
- V. Girault and P.-A. Raviart, Finite element methods for Navier-Stokes equations, Springer Series in Computational Mathematics, 5, Springer-Verlag, Berlin, 1986.
- M. D. Gunzburger, Finite element methods for viscous incompressible flows, Computer Science and Scientific Computing, Academic Press, Inc., Boston, MA, 1989.
- R. Herbin, Analysis of cell centred finite volume methods for incompressible fluid flows, Ecole de printemps de mecanique des fluides numeriques, Roscoff, 2005.
- T. J. R. Hughes and L. P. Franca, A new finite element formulation for computational fluid dynamics. VII. The Stokes problem with various well-posed boundary conditions: symmetric formulations that converge for all velocity/pressure spaces, Comput. Methods Appl. Mech. Engrg. 65 (1987), no. 1, 85-96. https://doi.org/10.1016/0045-7825(87)90184-8
- N. Kechkar and D. Silvester, Analysis of locally stabilized mixed finite element methods for the Stokes problem, Math. Comp. 58 (1992), no. 197, 1-10. https://doi.org/10.1090/S0025-5718-1992-1106973-X
- K. A. Mardal, X.-C. Tai, and R. Winther, A robust finite element method for Darcy-Stokes flow, SIAM J. Numer. Anal. 40 (2002), no. 5, 1605-1631. https://doi.org/10.1137/S0036142901383910
- J. Necas, Equations aux derivees partielles, presses univ, Montreal, Montreal, 1965.
- C. M. Xie, Y. Luo, and M. F. Feng, Analysis of a unified stabilized finite volume method for the Darcy-Stokes problem, Math. Numer. Sin. 33 (2011), no. 2, 133-144.
- T. Zhang, L. Mu, and J. Yuan, A posteriori error estimates of stabilized finite volume method for the Stokes equations, Math. Methods Appl. Sci. 39 (2016), no. 1, 32-43. https://doi.org/10.1002/mma.3457
-
T. Zhang and L. Tang, A stabilized finite volume method for Stokes equations using the lowest order
$P_1\;-\;P_0$ element pair, Adv. Comput. Math. 41 (2015), no. 4, 781-798. https://doi.org/10.1007/s10444-014-9385-9