• Title/Summary/Keyword: finite volume element

Search Result 749, Processing Time 0.029 seconds

Finite volumes vs finite elements. There is a choice

  • Demirdzic, Ismet
    • Coupled systems mechanics
    • /
    • v.9 no.1
    • /
    • pp.5-28
    • /
    • 2020
  • Despite a widely-held belief that the finite element method is the method for the solution of solid mechanics problems, which has for 30 years dissuaded solid mechanics scientists from paying any attention to the finite volume method, it is argued that finite volume methods can be a viable alternative. It is shown that it is simple to understand and implement, strongly conservative, memory efficient, and directly applicable to nonlinear problems. A number of examples are presented and, when available, comparison with finite element methods is made, showing that finite volume methods can be not only equal to, but outperform finite element methods for many applications.

MULTIGRID CONVERGENCE THEORY FOR FINITE ELEMENT/FINITE VOLUME METHOD FOR ELLIPTIC PROBLEMS:A SURVEY

  • Kwak, Do-Y.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.12 no.2
    • /
    • pp.69-79
    • /
    • 2008
  • Multigrid methods finite element/finite volume methods and their convergence properties are reviewed in a general setting. Some early theoretical results in simple finite element methods in variational setting method are given and extension to nonnested-noninherited forms are presented. Finally, the parallel theory for nonconforming element[13] and for cell centered finite difference methods [15, 23] are discussed.

  • PDF

Computer Simulation of Upsetter Forging Processes that uses Finite Volume Method (유한체적법을 이용한 업셋터 단조공정의 컴퓨터 시뮬레이션)

  • Kim, H.T.;Park, S.Y.;Joun, M.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.05a
    • /
    • pp.170-175
    • /
    • 2007
  • The finite volume method for forging simulation is examined to reveal its possibility as well as its problem in this paper. For this study, the finite volume method based MSC/SuperForge and the finite element method based AFDEX are employed. The simulated results of the homogeneous compression obtained by the two softwares are compared to indicate the problems of the finite volume method while several application examples are given to show the possibility of the finite volume method for simulation of upsetter forging processes. It is shown that the finite volume method can not predict the exact solution of the homogeneous compression especially in terms of forming load and deformed shape but that it is helpful to simulate very complex forging processes which can hardly be simulated by the conventional finite element method.

  • PDF

A New Control Volume Finite Element Method for Three Dimensional Analysis of Polymer Flow (고분자 유동의 3차원 해석을 위한 새로운 검사 체적 유한 요소법)

  • 이석원;윤재륜
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.05a
    • /
    • pp.461-464
    • /
    • 2003
  • A new control volume finite element method is proposed for three dimensional analysis of polymer flow. Tetrahedral finite element is employed and co-located interpolation procedure for pressure and velocity is implemented. Inclusion of pressure gradient term in the velocity shape functions prevents the checkerboard pressure field from being developed. Vectorial nature of pressure gradient is considered in the velocity shape function so that velocity profile in the limit of very small Reynolds number becomes physically meaningful. The proposed method was verified through three dimensional simulation of pipe flow problem for Newtonian and power-law fluid. Calculated pressure and velocity field showed an excellent agreement with analytic solutions for pressure and velocity. Driven-cavity problem, which is reported to yield checkerboard pressure filed when conventional finite element method is applied, could be solved without yielding checkerboard pressure field when the proposed control volume finite element method was applied. The proposed method could be successfully applied to the three dimensional mold filling problem.

  • PDF

FREE SURFACE FLOW COMPUTATION USING MOMENT-OF-FLUID AND STABILIZED FINITE ELEMENT METHOD (Moment-Of-Fluid (MOF) 방법과 Stabilized Finite Element 방법을 이용한 자유표면유동계산)

  • Ahn, H.T.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.228-230
    • /
    • 2009
  • The moment-of-fluid (MOF) method is a new volume-tracking method that accurately treats evolving material interfaces. Based on the moment data (volume and centroid) for each material, the material interfaces are reconstructed with second-order spatial accuracy in a strictly conservative manner. The MOF method is coupled with a stabilized finite element incompressible Navier-Stokes solver for two fluids, namely water and air. The effectiveness of the MOF method is demonstrated with a free-surface dam-break problem.

  • PDF

FINITE VOLUME ELEMENT METHODS FOR NONLINEAR PARABOLIC PROBLEMS

  • LI, QIAN;LIU, ZHONGYAN
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.6 no.2
    • /
    • pp.85-97
    • /
    • 2002
  • In this paper, finite volume element methods for nonlinear parabolic problems are proposed and analyzed. Optimal order error estimates in $W^{1,p}$ and $L_p$ are derived for $2{\leq}p{\leq}{\infty}$. In addition, superconvergence for the error between the approximation solution and the generalized elliptic projection of the exact solution (or and the finite element solution) is also obtained.

  • PDF

A Study on the comparison of FEM and FEM for Backward Impact Extrusion Process (후방 충격압출 성형 공정의 FVM과 FEM의 적용성에 관한 연구)

  • 정상원;조규종;김성훈
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1565-1568
    • /
    • 2003
  • The backward extrusion process is one of the commonly used metal forming processes. In this paper. a battery case which has the rectangular section, is analyzed using a 3D metal forming package(MSC.Superforge). This pacakge uses the finite volume analysis method. It is shown that the MSC.Superforge package using finite volume method provides result very close to those obtained from a finite element analysis package(MSC.Superform). However, the simulation time using the finite volume method was almost 10 % of the simulation time consumed by the other package using finite element method. Moreover, the finite volume method used in MSC.Superforge can eliminate the remeshing problems that make the simulating a metal forming process with severe deformation, such as the extrusion process, so difficult.

  • PDF

A STABILIZED CHARACTERISTIC FINITE VOLUME METHOD FOR TRANSIENT NAVIER-STOKES EQUATIONS

  • Zhang, Tong
    • Journal of applied mathematics & informatics
    • /
    • v.29 no.5_6
    • /
    • pp.1205-1219
    • /
    • 2011
  • In this work, a stabilized characteristic finite volume method for the time-dependent Navier-Stokes equations is investigated based on the lowest equal-order finite element pair. The temporal differentiation and advection term are dealt with by characteristic scheme. Stability of the numerical solution is derived under some regularity assumptions. Optimal error estimates of the velocity and pressure are obtained by using the relationship between the finite volume and finite element methods.

Computer Simulation of Complex Hot Forging Processes by a Forging Simulator Based on Finite Volume Method (유한체적법에 근거한 단조공정 시뮬레이터를 이용한 난형상 열간단조 공정의 컴퓨터 시뮬레이션)

  • Kim, B.T.;Eom, J.G.;Choi, I.S.;Lee, M.C.;Park, S.Y.;Joun, M.S.
    • Transactions of Materials Processing
    • /
    • v.16 no.3 s.93
    • /
    • pp.187-192
    • /
    • 2007
  • The finite volume method for forging simulation is examined to reveal its possibility as well as its problem in this paper. For this study, the finite volume method based MSC/SuperForge and the finite element method based AFDEX are employed. The simulated results of the homogeneous compression obtained by the two softwares are compared to indicate the problems of the finite volume method while several application examples are given to show the possibility of the finite volume method fur simulation of complex hot forging processes. It is shown that the finite volume method can not predict the exact solution of the homogeneous compression especially in terms of forming load and deformed shape but that it is helpful to simulate very complex forging processes which can hardly be simulated by the conventional finite element method.

FINITE VOLUME ELEMENT METHODS FOR NONLINEAR PARABOLIC INTEGRODIFFERENTIAL PROBLEMS

  • Li, Huanrong;Li, Qian
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.7 no.2
    • /
    • pp.35-49
    • /
    • 2003
  • In this paper, finite volume element methods for nonlinear parabolic integrodifferential problems are proposed and analyzed. The optimal error estimates in $L^p\;and\;W^{1,p}\;(2\;{\leq}\;p\;{\leq}\;{\infty})$ as well as some superconvergence estimates in $W^{1,p}\;(2\;{\leq}\;p\;{\leq}\;{\infty})$ are obtained. The main results in this paper perfect the theory of FVE methods.

  • PDF