• 제목/요약/키워드: finite strip

검색결과 336건 처리시간 0.019초

박판단면의 비선형 좌굴거동에 관한 해석적연구 (A Study on the Nonlinear Buckling Behavior of Thin-Walled Sections)

  • 진창선;권영봉
    • 한국강구조학회 논문집
    • /
    • 제10권3호통권36호
    • /
    • pp.407-421
    • /
    • 1998
  • 본 논문에서는 박판구조물의 좌굴모드 및 좌굴응력값을 구하기 위해서 spline finite strip method를 이용하여 박판구조물이 흔히 좌굴을 일으키기 전에 다양한 초기부정형으로 인하여 발생할 수 있는 전좌굴변형 및 비선형 응력-변형률 관계를 포함한 비선형 비탄성 좌굴해석프로그램을 개발하였다. 이 방법은 다양한 지점조건과 임의의 하중조건을 가지는 박판구조물에 적용이 가능하며, 초기부정형과 잔류응력을 포함하고 있는 다양한 형태의 박판구조물의 비선형 좌굴거동을 보다 정확하게 예측할 수가 있었다.

  • PDF

열간압연중 압연하중 및 압연동력 예측 모델 (Evaluzation of Model equation Predicting Roll Force and Roll Power during Hot Rolling)

  • 곽우진;황상무
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1999년도 제3회 압연심포지엄 논문집 압연기술의 미래개척 (Exploitation of Future Rolling Technologies)
    • /
    • pp.308-312
    • /
    • 1999
  • Developed the model equations which calculate roll force, roll power during hot rolling in real time. The variables which mainly effect on the roll force, roll power are shape factor, reduction, roll diameter, roll velocity, strip inlet temperature, carbon content of strip and strip-roll contact friction coefficient. Among these variables roll diameter, roll velocity, inlet temperature, carbon content and friction coefficient can be excluded in interpolated model equation by introducing equation of die force(F'), power(p') of the frictionless uniform plane strain compression which can be calculated without iteration. At the case of coulomb friction coefficient of 0.3, we evaluated coefficient of polynomial equations of {{{{ { F} over {F' } }}}}, {{{{ { Pf} over {Pd }, { Pd} over {P' } }}}} from the result of finite element analysis using interpolation. It was found that the change of values of {{{{ { F} over {F' }, { P} over {P' } }}}} with the friction coefficient tend to straight line which slope depend only on shape factor. With these properties, developed model equations could be extended to other values of coulomb friction coefficient. To verify developed roll force, roll power model equation we compared the results from these model equation with the results from these model equation with the results from finite element analysis in factory process condition.

  • PDF

사질토지반의 지지력분석을 위한 얕은기초의 파괴거동에 대한 모형실험과 유한요소해석 비교 검토 (A Study on Comparison of Finite Element Analysis with Model Test of Shallow Footing Failure for Cohesionless Soil with Non-associated Plasticity and Some Smooth Footing)

  • 김영민;강성귀
    • 한국지반신소재학회논문집
    • /
    • 제9권1호
    • /
    • pp.13-20
    • /
    • 2010
  • 본 연구에서는 얕은기초의 파괴거동과 전체적인 하중-변위 관계를 묘사하는 방법에 대하여 기술하였다. 제안한 방법에 의하여 얕은기초의 최고점 이후의 거동과 점진적인 파괴과정을 비교적 명확히 기술하는 것이 가능함을 보여주었다. 유한요소 수치해석법으로 얕은 기초지반에 대하여 마찰각과 체적팽창각을 달리하여 지지력계수 $N_{\gamma}$을 계산하였다. 일반적으로 적용하는 관련 흐름법칙과 거친 기초조건에 의한 지지력계수 $N_{\gamma}$값은 실제 흙거동인 비관련 흐름법칙과 약간 미끈한 기초조건에 대해서는 불안전한 설계가 되는 것을 보여주었다.

  • PDF

A finite strip method for elasto-plastic analysis of thin-walled structures under pure bending

  • Cheung, M.S.;Akhras, G.;Li, W.
    • Structural Engineering and Mechanics
    • /
    • 제8권3호
    • /
    • pp.233-242
    • /
    • 1999
  • In the present study, the elasto-plastic analysis of prismatic plate structures subjected to pure bending is carried out using the finite strip method. The end cross-sections of the structure are assumed to remain plane during deformation, and the compatibility along corner lines is ensured by choosing proper displacement functions. The effects of both the initial geometrical imperfections and residual stresses due to fabrication are included in the combined geometrically and materially nonlinear simulation. The von-Mises yield criterion and the Prandtl-Reuss flow theory of plasticity are applied in modelling the elasto-plastic behavior of material. Newton-Raphson iterations are carried out as the rotation of the end cross sections of the structure is increased step by step. The parameter representing the overall axial strain of structure is adjusted constantly during the iteration process in order to eliminate the resulting overall axial force on any cross-section of the structure in correspondence with the assumption of zero axial force in pure bending. Several numerical examples are presented to validate the present method and to investigate the effects of some material and geometrical parameters.

Local buckling of thin and moderately thick variable thickness viscoelastic composite plates

  • Jafari, Nasrin;Azhari, Mojtaba;Heidarpour, Amin
    • Structural Engineering and Mechanics
    • /
    • 제40권6호
    • /
    • pp.783-800
    • /
    • 2011
  • This paper addresses the finite strip formulations for the stability analysis of viscoelastic composite plates with variable thickness in the transverse direction, which are subjected to in-plane forces. While the finite strip method is fairly well-known in the buckling analysis, hitherto its direct application to the buckling of viscoelastic composite plates with variable thickness has not been investigated. The equations governing the stiffness and the geometry matrices of the composite plate are solved in the time domain using both the higher-order shear deformation theory and the method of effective moduli. These matrices are then assembled so that the global stiffness and geometry matrices of a moderately thick rectangular plate are formed which lead to an eigenvalue problem that is solved to determine the magnitude of critical buckling load for the viscoelastic plate. The accuracy of the proposed model is verified against the results which have been reported elsewhere whilst a comprehensive parametric study is presented to show the effects of viscoelasticity parameters, boundary conditions as well as combined bending and compression loads on the critical buckling load of thin and moderately thick viscoelastic composite plates.

Finite element model for interlayer behavior of double skin steel-concrete-steel sandwich structure with corrugated-strip shear connectors

  • Yousefi, Mehdi;Ghalehnovi, Mansour
    • Steel and Composite Structures
    • /
    • 제27권1호
    • /
    • pp.123-133
    • /
    • 2018
  • Steel-concrete-steel (SCS) sandwich composite structure with corrugated-strip connectors (CSC) has the potential to be used in buildings and offshore structures. In this structure, CSCs are used to bond steel face plates and concrete. To overcome executive problems, in the proposed system by the authors, shear connectors are one end welded as double skin composites. Hence, this system double skin with corrugated-strip connectors (DSCS) is named. In this paper, finite element model (FEM) of push-out test was presented for the basic component of DSCS. ABAQUS/Explicit solver in ABAQUS was used due to the geometrical complexity of the model, especially in the interaction of the shear connectors with concrete. In order that the explicit analysis has a quasi-static behavior with a proper approximation, the kinetic energy (ALLKE) did not exceed 5% to 10% of the internal energy (ALLIE) using mass-scaling. The FE analysis (FEA) was validated against those from the push-out tests in the previous work of the authors published in this journal. By comparing load-slip curves and failure modes, FEMs with suitable analysis speed were consistent with test results.

열 유동 현상을 고려한 마그네슘 용탕 직접 압연공정 해석 (Analysis of the Molten Metal Direct Rolling for Magnesium Considering Thermal Flow Phenomena)

  • 배정운;강충길;강석봉
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 추계학술대회 논문집
    • /
    • pp.786-789
    • /
    • 2005
  • The proper parameters in a twin roll strip casting are important to obtain the stabilization of the Mg sheet. What is examined in this paper is the quantitative relationships of the important control parameters such as the roll speed, height of pool region, outlet size of nozzle, solidification profile and the final point of solidification in a twin roll strip casting Unsteady conservation equations were used for transport phenomena in the pool region of a twin roll strip casting in order to predict a velocity, temperature distributions of fields and a solidification process of molten magnesium. The energy equation of cooling roll Is solved simultaneously with the conservation equations of molten magnesium In order to consider the heat transfer through the cooling roil. The finite difference method (2-D) and the finite element method (2-D) are used in the analysis of pool region and cooling roil to reduce computing time and to improve the accuracy of calculation respectively.

  • PDF

Transient thermal stresses of orthotropic functionally graded thick strip due to nonuniform heat supply

  • Ootao, Yoshihiro;Tanigawa, Yoshinobu
    • Structural Engineering and Mechanics
    • /
    • 제20권5호
    • /
    • pp.559-573
    • /
    • 2005
  • This paper is concerned with the theoretical treatment of transient thermal stresses involving an orthotropic functionally graded thick strip due to nonuniform heat supply in the width direction. The thermal and thermoelastic constants of the strip are assumed to possess orthotropy and vary exponentially in the thickness direction. The transient two-dimensional temperature is analyzed by the methods of Laplace and finite sine transformations. We obtain the exact solution for the simply supported strip under the state of plane strain. Some numerical results for the temperature change, the displacement and the stress distributions are shown in figures. Furthermore, the influence of the orthotropy and nonhomogeneity of the material is investigated.

형상기억합금 작동기를 이용한 복합재료 구조물의 형상 변형 해석 (Numerical Analysis of Shape Modification for the Composite Structures using SMA Strip Actuator)

  • 노진호;한재흥;이인
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2004년도 추계학술발표대회 논문집
    • /
    • pp.278-281
    • /
    • 2004
  • In this paper, the thermomechanical responses of shape memory alloy (SMA) actuators and their applications as the shape adaptive structures combining SMA actuators produced in the form of strip with composite structures are investigated. The numerical algorithm of the 3-D SMA thermomechanical constitutive equations based on Lagoudas model is implemented to analyze the unique characteristics of SMA strip. Also, the incremental SMA constitutive equations are implemented in the user subroutine UMAT by using ABAQUS finite element program. The shape change of structure is caused by initially strained SMA strip bonded on the surface of the composite structure when thermally activated. Numerical results show that SMA strip actuator can generate enough recovery force to deform the composite structure and sustain the deformed shape subjected to large external load, simultaneously.

  • PDF

열간 사상 압연중 판 온도예측 모델 개발 및 적용 (The development and application of on-line model for the prediction of strip temperature in hot strip rolling)

  • 이중형;최지원;곽우진;황상무
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2004년도 제5회 압연심포지엄 신 시장 개척을 위한 압연기술
    • /
    • pp.336-345
    • /
    • 2004
  • Investigated via a series of finite-element(FE) process simulation is the effect of diverse process variables on some selected non-dimensional parameters characterizing the thermo-mechanical behavior of the roll and strip in hot strip rolling. Then, on the basis of these parameters, on-line models are derived for the precise prediction of the temperature changes occurring in the bite zones as well as in the inter-stand zones in a finishing mill. The prediction accuracy of the proposed models is examined through comparison with predictions from a FE process model.

  • PDF