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A Study on the Nonlinear Buckling Behavior
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ABSTRACT : The purpose of this paper is to provide and verify an analytical
method, based on the spline finite strip method, which can be used to
investigate the buckling mode and stress of thin-walled steel sections.
Geometric imperfection and initial stress of plates and plate assemblies, which
are resulted from various preloadings and may cause prebuckling deformations
before buckling, are included in the analysis. Material nonlinearity and residual
stress are also considered. It can be applied to sections with simple or
non-simple boundary conditions and arbitrary loading. The method has been
applied to investigate the buckling behavior of plates and plate assemblies which

are subjected to compression with initial imperfections and residual stresses.
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1. Introduction

Thin-walled sections may have pre-
buckling deformations due to geometric
imperfections and initial strains before
buckling in a local, a distortional or an
overall mode(Kwon 1993, Hancock 1978).
In the post-buckling range, the buckling
mode may change into a different buckling
mode near second bifurcation point. The
purpose of this paper is to provide and
verify an analytical method, based on the
spline finite strip method, which can be
used to investigate the buckling modes
and stresses of thin-walled structures
which have geometric imperfections and
initial strains and may have prebuckling
deformations before buckling.

The method can be extended further to
the second buckling analysis of pre-
buckled structures considering complicated
stresses and deformations in the post-
buckling range. The spline finite strip
method developed by Fan{(1982) has been
applied to the elastic and inelastic
buckling analysis of thin-walled sections
by Lau and Hancock(1990) and proven to
be accurate and efficient.

However, the researches did not include
the analysis of the imperfect structures
which have initial imperfections and
locked-in residual stresses. The structures
may show first prebuckling deformations
apart from the buckling mode and then
may buckle into the primary mode(Pi
1992). The behavior may be significantly
different from that of the perfect structures.
In this paper, the basic Bs-spline function
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(Carl de Boor 1978) is adopted because of
it’s localized nature and hence it’s ability
to reduce the computing time by band-
width mini-mization.

To take into account the nonlinear
stress-strain properties of the material,
several proposed stress-strain curves are
considered in this paper. Numerical and
algebraic integrations have jointly been
performed for the stiffness matrix to
improve the versatility.

It can be applied to sections which have
simple or non-simple boundary conditions
and are subjected to arbitrary loading.
It is also unrestricted by the overall
structural length.

2. Spline Finite Strip Analysis

2.1 Spline Function

A typical strip with section knots and a
local coordinate system is shown in Fig.
1. In the spline finite strip method, the
prismatic member is discretized by using
n nodal lines in the transverse direction

(y—axis) and m sections in the longitu-

m sections

Fig. 1 A Bs-spline strip
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dinal direction(x—axss). The two additional
section knots on each nodal line are
required to define the spline function over
the length of a strip. Each section knot
has four degrees of freedom, two out-of
-plane deformations w,8(=dw/33y) and
two in-plane displacements u, v.

The

along the nodal line is the Bs-spline with

spline function for displacement

m equal section lengths. The displacement
function describing the longitudinal vari-
ation is taken as the summation of local
Bs-splines by

Fx) = ,.Eai 0,(x) .1)

where @;(x) is a local spline function

as shown in Fig. 2(a) and @; is a
coefficient to be determined in the
analysis. A linear combination of local
Bs-splines is shown in Fig. 2(b). A local

Bs-spline function is a piecewise cubic
polynomial which is twice differentiable.
A standard local Bz-spline function
defined by where 2

shown in Fig. 2(a).

is
is section length

A set of splines amended for particular
boundary conditions is shown on Fig. 2(c).

2.2 Displacement Function

The displacement functions are given by

3
(?}C“xi-z-z) ) g Xi-2SXSXi-)
h'+3h (x—xi,1)+3h(x—x,-—1) _'3(5\7—?6,'_1)3 X1 <x<x; (2.9)
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otherwise
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(a) A local B3-spline spline

m sections

(b) A linear combination of local B3-splines

(c) Amended boundary local splines

Fig. 2 B3-splines
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the product of the longitudinal B3-spline
function and the transverse interpolation
function.

In-plane strip displacements( u,v) in
local coordinate system are expressed as

[“] =[Nl 0ul (84

[¢1] 0 O 0 U;
=[M 0 N 0] 0 [@] 0 0 ||w
0 N N, 0 [@] 0 ||z
0 0 D [Q,] v
(2.3a)
where
lel‘";
Ny=y (2.3b)
=1

in which b is the width of strip.

[#,] —[®,] are row matrices and each
is composed of (m+3) B3-spline functions

as defined by

o=[ 0., &, O, 0 ...,
Onzr Oty Oy D]
(2.4)
where Dindicates an amended boundary

spline. The displacement coefficient vec-

tors [ui], v ,[vj] are column vectors and
each has (m+3) terms which correspond

with those in Eq. 2.5.

Vector [ #;] is defined as

[u,‘]= [ U, Uy Uy, ...,
r (2.5)
Um—1, Um, Um+] ]
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Out-of-plane strip displacement w is given
in Eq. 2.6(a).

w = [Np][ @r][ 7]
=[N3 Ny Ny Ny

[@5] 0 0 0 w;

0 0 [@;] 0 w;

0 0 0 [og] 8;

(2.6a)
where

Ny=1-33+27%
Ny=vy(1-2y+ ¥

4 Y(—l_z 2Y_3 y ) (26b)
N;s=3y -2y
Ne=o(¥'=7)

[@:]1—[®Ps] are row matrices and
each has (m+3) local B3-spline functions

as defined by Eq. 2.4.
2.3 Strain-Displacement Relations

Both in-plane and out-of-plane displace-
ments are considered in the nonlinear
strain-displacement relations since membrane
and plate bending problems may be coupled
and therefore cannot be dealt with
separately.

The strains in the plate at mid-surface
are given by Novozhilov(1953)

du
ax
Ex
SEE
Yy, .i%_{_ v
ay ox
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o)
() (N ) N )
(2.7)

The curvature-displacement relations are
taken in the linear terms.

Eq. 2.7 are expressed as Eq. 2.8 in the
condensed form.

(e) = [[B] + (BN |(a) 28

where [BL] denotes the linear matrix
and [ By(d)] is a nonlinear matrix which

is a function of the displacement.
3. Nonlinear Stress-Strain Relations
3.1 Stress-Strain Relations

In the elastic range, the membrane

stress-strain relations are given by

E vE
o -7 -2 0 e"l
KN
__E__
T 0 L CE T AR
(3.1)

In the inelastic range, the incremental
stress-strain relations for the case of
uniform compression in the longitudinal

direction can be expressed by

H 103 3% 1998t 9%

do, D, D, 0 de,
dO'y = Dl Dy 0 dey
dtsy ' 0 0 Dy ‘ A7 [

(3.2a)

which can be represented in matrix
notation by

{do} = [Dylp{de} (3.2b)

Similar to Eq. 3.1(¢c), the change in
bending and twisting moment in a plate
can be given in relation with the change

of curvature.

{dM} = [Dr]p{do} (3.2¢)

(Delp=t(Da, G20

The matrices [Dylp and [Dplp are
the plastic property matrices describing
the membrane and flexural displacements
respectively.

3.1.1 Flow Theory of Plasticity
According to the flow theory of
plasticity as formulated by Handelman
and Prager, the material property

coefficients in the inelastic range, D, , Dy,

D, and D,yare given by

D, = % (3.3a)
p,= 4 (3.3b)
an



Dl — 2(7‘-’ _'?lj+ 21/) (330)
o~ E
Dy =G= 55y (330
_ TS
0= x(5 4QE (1-2v) (3.30)
x= —EI% (3.30)

where FE; is the tangent modulus

determined from the stress-strain curve of
the material, and v is the elastic value of
It should be noted that if

x=1 ie E = E,, is substituted into Eq.
3.3(f), then [D]p

[D]..

Poisson’s ratio.

is exactly same as

3.1.2 Deformation Theory of Plasticity
Inelastic plate buckling problems have
been investigated by Bijlaard, Stowell and
Ilyushin with the stress-strain relations
based on the
plasticity.

deformation theory of
Bijlaard and Stowell assumed
continuous loading across the thickness of
plate when buckling occured, whereas
Ilyushin assumed the concept of strain
reversal on the convex side of the plate.
Test with the

analysis of Bijlaard, therefore his analysis

results agreed Dbetter
is summarized in this section.

The material property moduli according
to Bijlaard are given by

x+3+3e

D, = o)

(3.4a)

D, = ~4§"— (3.4b)
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D, = 2 _é +2v) (3.4¢)
_ E
Dy = 5070730 (3.4d)

o= 20 *4u+32)_ (1—2)*

(3.4e)

- £ _
e = E. 1 (3.4f)
where E, is the secant modulus

determined from the stress-strain curve of

the material, v is the elastic value of

Poisson’s ratio and x is as defined in Eq.

3.3(0).

3.2 Stress-Strain Curve

In order to determine the values of the
tangent and secant modulus at different
stress levels, nonlinear material stress-
strain curves have been represented in

the forms of formulae.
3.2.1 Plank

According to Plank(1974), stress-strain
curve can be represented by

l—cu

- g
deo _ _E(U—p)°

where ¢ = 0/, and c is a constant.

A value of ¢=0.997 has been suggested

BRUT TS =R



for the structural steel. Fig. 3 shows the
effects of the ¢ values on the shapes of
the stress-strain curves determined using
Eq. 3.5{(a) and 3.5(0b), E = 2.05 x
105MPa and oy = 320MPa have been
used in Fig. 3.

c = 0.907 ¢ = 0.96 /0 =0.B

08

ais,

0.4

0.2

o 0.002 0.004 0.008 0.008 o0 0.012
Straln

Fig. 3 Stress-Strain curves according to Plank

3.2.2 Ramberg-Osgood
The general form of the Ramberg-
Osgood(1943) formula is expressed as

e= % +4( ) (3.6a)

tyla

where k and n are constants. Ramberg
and Osgood(1943) have derived expre-
ssions for determining k and n, hence,
Eq. 3.6(a) can be re-written as

- 5T E " TE \-op1
do _ E
do _ 1+_3J_1_ FEG (3.6¢)
7 (60.7)
B log (17/7)
where n =1+ log (gy.7/ 00.85)
(3.6d)

A 103 3% 1996 9%

and the stresses dy; and Gypg; are

determined from the stress-strain curve of
the coupon test.

Ramberg—Cegaod

0.3 Plank{C=0.96)

0 o.001 0.062 0.003 0.004 0.008 Q.008.  0.007 0.008
Strwin

Fig. 4 Stress-Strain curve according to Ramberg-Osgood
and Plank

They are the stresses corresponding to
Es = 0.7E and Es = 0.85E respectively.
The shape of the stress-strain curve
determined using the Ramberg-Osgood
formula is demonstrated in Fig. 4 and
compared with Plank’s formula where the
vield stress and Young's modulus is the
same as those used in Plank’s formula.

3.2.3 Elastic-Perfectly Plastic Relations
Typically elastic-perfectly plastic curves
for the mild steel shown in Fig. 5 are

ele,

Fig. 5 Elastic-Perfectly Plastic Stress-Strain curve
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generally adapted for the hot-rolled
and Dbuilt-up sections. The

stress—strain relations follow the Hook's

sections

law and have a yield plateau. The curves
are straight inclined with Young's
modulus E up to yield stress and then
horizontal with E; =0 neglecting the strain-
hardening range.

4. Matrix Formulations for
Nonlinear Buckling Analysis

4.1 Total Potential Energy

Total potential energy can be expressed as

nH=uU+V (4.1a)

where U is the strain energy and V is
the potential energy. The strain energy
can be expressed as

U= fv{s}T{d} dv (4.1b)

The potential energy of the applied
membrane forces resulting from in-plane
and out-of-plane buckling deformations
are expressed as

V= L{d}T{N} ds (4.2a)

where

{(N}T={N,, N,, Ny} (4.2b)

and {d} is the corresponding dis-
placement vector.

The first variation of the total potential
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energy can be expressed as

ol =6(U+ V)

i

fva{e}T{a}dv-i— fs6{d}T{N}ais
(4.8a)

where the first variation of the strain
can be expressed as

ole} = [Br+Bxd]dld}

_ (4.3b)

= [ Bl1é{d}
Since the linear terms in strain
formulation disappear in the second

variation, the second variation of the total

potential energy can be given as

Lon = 1 [#a (o

+ % f 5(&} T8{ o}
(4.4a)

The second variation of the strain can
be expressed as

(e} = S[ Byl 8{d) (4.4b)

The first term of the right side of
Eq.4.4(a) is extended as

-%—fvaz(e}T{a)dv= LS{d}TéfBN]T{o}dv

0,
=4 La{d}ﬁG]T[AIT{ oy;dv

O,

(4.5a)
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and by the well known matrix property,
Eq. 4.5(a) can be expressed as Eq. 4.5(b).

1 [ oyv=% [sa)TK.18(a)

=+ [4a) TG AT(GCI8d)dy  (4.5D)

where [ G] is a matrix defined in terms
of the coordinates as expressed in Eq.

4.5(c)

[N,d", 0 Mo’y 0 0 0 0 0

N, o, 0 0 0 0
0 Ny®'s N@'s NsO0'y Nol's
0 0 0 0 0

2

1@,
0

N a0,

[
0 0

N, (O Ny,
0 0 0 0 0

0 0 Nyf; N,y Ny®; Ny

=

(4.5¢)

100
[G]=[ 0x13 nylil]’ []3]:—-—[0 10| (4.5d)
001

O'Xylg O'yI3

The second term of Eq. 4.4(a) is
composed of conventional linear and non-
linear stiffness matrices and expressed as
1 [sla slads =1 [ 8y TBITDI [ Blol s

=4 s(a) 1K1 )

=1 8y LK)+ KDl d)

(4.5e)

4.2 Formulations Including Prebuckling
Deformations

At a point of equilibrium, the total

potential energy is constant for
infinitesimal buckling deformations: i.e.

H 103 3% 1908t 9%

the first variation of the total potential
energy equals zero. The critical condition
for the buckling is that second variation
of the total potential energy must be zero.
This buckling criterion may be obtained
from Eq. 4.5(a)-(e) as

1onm =L&w+m
=1 sy K 1s(a) =0

" (4.6a)

-where [KT] is tangent stiffness matrix
as given in Eq. 4.7 and expressed as

[Kr]=LK. ]+ (KN +[K] 4.7

in which subscripts L.N.c¢ denotes
linear, nonlinear and initial stress
respectively. The plate or plate assemblies
have prebuckling deformations .due to
initial imperfections and residual stresses
before buckling occurs and these defor-
mations may have considerable effects on
the buckling stress and the mode shape of
the structural members. To include the
prebuckling deformations, buckling
formulation can be expressed as

(IK+(d))1—[Kc(DId}=0 (4.82)

where [K¢(A)] is nonlinearly depen-
dent on the prebuckling deformations due

to the applied load and [K(dp)] is
dependent on the initial deformations,

where buckling analysis needs to start
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and is expressed as

[Kr(d]=[K. 1+ [ Kn(dp)]+ [ K,(dy)]
' (4.8b)

[K;(A)] in Eq. 4.8(a) is the change
in the tangent stiffness matrix induced

from the prebuckling deformations due to
the applied compressive load. It is
composed of two parts as

[Ke(D]=[Kn(d)]+[K,(dp)] (4.80)

where [ K,(d,)] is the increment of the
stability matrix due to applied load level

and is expressed as

[K,(d)]= [[GI"[46llGldv (4.80)

and [ Ky(d,)] is the increment of the
nonlinear tangent stiffness matrix due to

prebuckling deformations and can be
expressed as Eq. 4.8(e).

[Kn(d))= [1B1TLDI By(d,)ds
+ [1Bx(d)) L DI B, 1dv
+ [[By(d)) 1 DI By(d))ldv
+ [1By(d)1 T DI By(dp)lao
+ [IB(d)1 T DIl By(d,)do

(4.8e)

in which dy and d, indicate initial
imperfections and prebuckling defor-
mationis respectively. The lowest eigen
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value A of Eq. 4.8(a) is the load factor
for the buckling of sections. The Eq. 4.8(a)

is a nonlinear function of the load factor A.
However, there is few efficient nonlinear
algorithm available for the solution of
nonlinear eigen value problems. Therefore
linear eigen value solving method is
carried out iteratively until the eigen
value converges with certain accuracy.

5. Numerical Examples

5.1 Welded Box Sections Subjected to
Uniform Compression

Welded box sections with residual
stresses are loaded by uniform compre-
ssion. Details of the section geomeries are
shown in Fig. 6, and the test results can

Web G_L‘F

Flange bi B

(b) Longitudinally Stiffened Section

Fig. 8 Welded Box Sections
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\/

(b) case 2
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2eg, i = \"’-icg,

(¢) case 3

Fig 7. Assumptions of Residual Stress Distribution

be refered to Song and Kwon(1997).

The residual stress distribution in steel
plate panels due to welding were not
exactly defined(Kim and Kwon 1994, Ge
and Usami 1994). In this study, three
types of residual stress distribution were
assumed as Fig. 7 to conduct the inelastic
buckling analysis and compare with the
test results. For the both type of sections,
it was observed that the inelastic local
buckling of the plate panels occured and
shaped three half-waves along overall
length of the columns since aspect ratio
a/b equals 3.0 and the
stiffener has the enough flexural strength

longitudinal

to resist the distortional buckling.

The initial imperfections are neglected
due to the small magnitude. However,
the residual stress distribution has a
significant effect on the inelastic buckling
stress. Among the assumptions of residual
stress distribution, case 2 seems to
produce more accurate results than the
others. The results are compared in
Table. 1 and 2. The results show that
the residual stress distribution can be
assumed accurately by the tendon theory.
Bi-linear properties can produce more
comparative expectations for the buckling

stress than Ramberg-Osgood and Plank

Table. 1 Comparison of Unstiffened Sections
Inelastic Buckling Stress (MPa)
Elastic , .
. Plank Ramberg-Osgood Elastic-Perfectly Plastic
Speci Test Buckling
PECImen | (\fPa) | Analysis without
(MPa) case 3 case 2 case 3 residual case 1 case 2 case 3
stress
Us 9 257.0 481.0 276.7 229.0 .221.1 290.0 290.0 290.0 290.0
Us 12 229.0 2686.0 249.7 211.3 207.5 266.3 214.0 231.7 235.8
Us 15 129.0 148.0 129.4 133.5 134.7 148.6 95.8 133.5 134.7

& 103 3% 1998 0%
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Table, 2 Comparison of Stiffened Sections

Elastic Inelastic Buckling Stress (MPa)
. Test Buckling
Specimen : Plank Ramberg-Osgood Elastic-Perfectly Plastic
(MPa) Analysis
(MPa) case 2 case 3 case 2 case 3 case 2 case 3
8515(35) 164.0 197.5 153.0 161.7 167.1 177.9 169.2 178.1
8515(45) 170.0 197.6 153.3 162.0 167.3 178.2 169.4 178.4

formulas due to the characteristics of mild
steel. And the numerical results obtained
by the program seem to be reasonable in
comparison with the test results.

b.2 Rectangular Plate Subjected to
Uniform Compression

A simply supported rectangular plate

with small initial imperfections is
assumed to be compressed by uniform

stress as shown in Fig. 8.

180mm ,

- $.8

60mm 5.8 t=1.1mm 8.8

8.8

Fig. 8 Rectangular Plate Subjected to Uniform Compression

The assumed initial imperfection mode
is one half-wave buckling mode which is
fourth mode while the plate buckles in
three which is the first
buckling mode as shown in Table. 3. The

half-waves

imperfect plate is buckled in the first
mode since the first buckling stress is
well smaller than those of the second or
higher buckling modes as shown in Table
3. However, if the first several buckling
modes are similar or nearly similar, the
imperfect plate may not buckle in the
first buckling mode but may buckle in the
other modes. The results obtained without
considering prebuckling deformations are
those
including prebuckling deformations in
Table 4. The results show that the initial
imperfections increase the buckling stress

compared with computed with

Table. 3 Buckling Mode and Stress of Perfect Plate

Buckling Buckling Stress Width

Mode (MPa) Mode Shape Half — Wavelength

Ist 249.1 1.0

|
2nd 320.9 = 1.67
3rd 483.5 2.33
t
4th 692.0 0.33
418 RYPEE =BT



Table. 4 Buckling Stress for Rectangular Sections

Elastic Buckling Stress (MPa) Inelastic Buckling Stress (MPa)
Imperfections |  with Prebuckling without with Prebuckling without
. Prebuckling ) Prebuckling
Deformations \ Deformations .
Deformations Deformations
0.0t 249.4 249.4 220.3 220.3
0.1t 251.0 250.4 2214 220.9
0.2t 255.6 253.2 224.2 222.5
0.8t 263.0 257.8 228.6 225.1
0.4t 272.7 264.0 234.2 228.7
Q0.5¢ 283.9 271.3 241.1 232.8
1.0t 345.9 315.8 288.6 260.1

nonlinearly as the magnitude is increased.

The buckling stress calculated excluding

prebuckling deformations gives more

conservative results as the magnitude of

the initial imperfection is increased and

can be acceptable in engineering accuracy.

However, if the magnitude of the initial

imperfection is considerably large, excluding

the

calculation of the

prebuckling deformations

buckling

in

stress may

produce too conservative buckling stress.

Ramberg-Osgood formula was used for the

nonlinear stress strain relation.

The values of oy9

assumed as 282 MPa and 246.5 MPa
respectively. The Young's modulus E was
taken as 2.05x105 MPa and the yield

stress 0, was 320 MPa.

and o0yg were

5.3 Cold-Formed Channel
Subjected to Uniform Compression

Sections

A lipped channel section, which has
initial imperfections but are not in the
clear buckling modes, is compressed with
fixed boundary conditions at both ends.

Table. 5 Buckling Stress for Channel Sections

Test Result Classical Analysis Spline Method
Length X
(1) stress Buckling stress Buckling Initial stress Buckling
"""""" (MPa) |~ ‘mode ~ | (MPa) "mode imperfection | {(MPa) " ‘mode
0.2t 83.6 D(1)+L(3)
400 89.0 D(1)+L(3) 81.5 D(1)+L(3)
0.5t 90.8 D(1)+L(3)
600 82.6 D(1)+L(5) 77.4 D(1) 0.5t 81.0 D(1)
75.5 D(1) 0.5t 75.4 D)
800 74.2 D(2) +1.(5)
79.4 DD +L(D) 1.0t 79.1 D) +L(T)
103 3% 19084 ORi 419



The geometries are given on Fig. 9. The
assumed initial imperfected mode is one
half-wave distortional buckling mode as
shown in Fig. 9 and the maximum
magnitude of the lip of the channel
section at mid-length is ranged from 0.2

times thickness to 1.0 times thickness.

A=90mm
B=120mm
d=7mm
t=1.1mm

Fig. 9@ Distortionally Buckled Lipped Channel

The results
method are compared in the Table. 8 with

calculated by proposed

the test results and those obtained by
D and
L indicate Distortional and Local buckling

classical linear buckling analysis.

mode respectively and D+L indicates the
mixed buckling mode. The values in
indicate the number of
The results show that

the classical solutions are slightly con-

parantheses
half~wavelengths.
servative values compared with test
results. The advanced proéedure produces
more accurate results since the initial
imperfections and prebuckling deformations

increase the buckling stress slightly.

420

6. Conclusion

The elastic and inelastic linearized
spline finite strip buckling analysis has
been developed to include the prebuckling
thin-walled

structures with initial imperfections and

deformations of prismatic
residual stresses under arbitrary loading
conditions. The nonlinear stress-strain

relations due to residual stress and
material nonlinearity have been included.

The examples indicate that the method
is efficient for analyzing the buckling
response of flat plate assemblies with
prebuckling deformations which may
buckle into one or several half~-waves and
in different mode shapes. The nonlinear
stress-strain relations and residual stress
models used in this paper can produce
resonable results in comparison with test
results.

The present method is expected to
account for the change of buckling modes
which may occur in the post-buckling
higher

range near the second or

bifurcation point.
ANEN
B =32e 1995-96d % @aadAg A4Q
TARALAR] (No. 951-1204-016-2)2 A ez
SRR ofdl FA=HYT
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