• 제목/요약/키워드: finite spectral method

검색결과 148건 처리시간 0.024초

노면 표면거칠기 특성의 대표값 정량화와 타이어 접촉력 해석 기법에 대한 고찰 (Representative Evaluation of Topographical Characteristics of Road Surface for Tire Contact Force Analysis)

  • 서범교;성인하
    • Tribology and Lubricants
    • /
    • 제33권6호
    • /
    • pp.303-308
    • /
    • 2017
  • Most automobile tire companies have not yet considered the geometric information of a road at the design stage of a tire because the topographical characterization of a road surface is very difficult owing to its vastness and randomness. A road surface shows variable surface roughness values according to magnification, and thus, the contact force between the road and tire significantly fluctuates with respect to the scale. In this study, we make an attempt to define a representative value for surface topographical information at multi-scale levels. To represent surface topography, we use a statistical method called power spectral density (PSD). We use the fast Fourier transform (FFT) and PSD to analyze the height profiles of a random surface. The FFT and PSD of a surface help in obtaining a fractal dimension, which is a representative value of surface topography at all length scales. We develop three surfaces with different fractal dimensions. We use finite element analysis (FEA) to observe the contact forces between a tire and the road surfaces with three different fractal dimensions. The results from FEA reveal that an increase in the fractal dimension decreases the contact length between the tire and road surfaces. On the contrary, the average contact force increases. This result indicates that designing and manufacturing a tire considering the fractal dimension of a road makes safe driving possible, owing to the improvement in service life and braking performance of the tire.

A novel approach to damage localisation based on bispectral analysis and neural network

  • Civera, M.;Fragonara, L. Zanotti;Surace, C.
    • Smart Structures and Systems
    • /
    • 제20권6호
    • /
    • pp.669-682
    • /
    • 2017
  • The normalised version of bispectrum, the so-called bicoherence, has often proved a reliable method of damage detection on engineering applications. Indeed, higher-order spectral analysis (HOSA) has the advantage of being able to detect non-linearity in the structural dynamic response while being insensitive to ambient vibrations. Skewness in the response may be easily spotted and related to damage conditions, as the majority of common faults and cracks shows bilinear effects. The present study tries to extend the application of HOSA to damage localisation, resorting to a neural network based classification algorithm. In order to validate the approach, a non-linear finite element model of a 4-meters-long cantilever beam has been built. This model could be seen as a first generic concept of more complex structural systems, such as aircraft wings, wind turbine blades, etc. The main aim of the study is to train a Neural Network (NN) able to classify different damage locations, when fed with bispectra. These are computed using the dynamic response of the FE nonlinear model to random noise excitation.

Phase inversion of seismic data

  • Kim, Won-Sik;Shin, Chang-Soo;Park, Kun-Pil
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 한국지구물리탐사학회 2003년도 Proceedings of the international symposium on the fusion technology
    • /
    • pp.459-463
    • /
    • 2003
  • Waveform inversion requires extracting a reliable low frequency content of seismic data for estimating of the low wave number velocity model. The low frequency content of the seismic data is usually discarded or neglected because of the band-limited response of the source and the receivers. In this study, however small the spectral of the low frequency seismic data is, we assume that it is possible to extract a reliable phase information of the low frequency from the seismic data and use it in waveform inversion. To this end, we exploit the frequency domain finite element modeling and source-receiver reciprocity to calculate the $Frech\`{e}t$ derivative of the phase of the seismic data with respect to the earth model parameter such as velocity, and then apply a damped least squares method to invert the phase of the seismic data. Through numerical example, we will attempt to demonstrate the feasibility of our method in estimating the correct velocity model for prestack depth migration.

  • PDF

수심 및 흐름의 영향에 의한 굴ㆍ회절을 고려한 불규칙파 모형 (Current -Drpth Refraction and Diffraction Model for Irregular Waves)

  • Jeong, Shin-Taek;Chae, Jang-Won
    • 한국해안해양공학회지
    • /
    • 제6권3호
    • /
    • pp.260-265
    • /
    • 1994
  • 대규모 흐름이 존재하는 불규칙한 해역에서 새로운 타원형 파동방정식을 유도하고, 유한차분법을 이용한 효율적인 수치모형을 개발하였다. 이때 청원형 방정식은 초기식 문제의 해법과 유사한 방법을 사용하여 해를 구하였다. 이 방법은 불규칙파의 변형을 계산하는 데 특히 효과적이며 수리모형 실험결과(Hiraishi, 1991)와 잘 일치하였다. 마지막으로 수중천퇴가 존재하는 완경사 해역에서 파랑과 흐름의 상호작용에 의한 수치해를 예시하였다.

  • PDF

CIP법을 이용한 구 좌표계에서의 천수 방정식 해석 (NUMERICAL ANALYSIS FOR THE SHALLOW WATER EQUATIONS ON THE SPHERE BY CIP METHOD)

  • 윤성영;김수연;김현철
    • 한국전산유체공학회지
    • /
    • 제10권2호
    • /
    • pp.7-14
    • /
    • 2005
  • In this study, the shallow water equations on the sphere is simulated by the proposed method which has high spatial resolution and is based on the CIP(Cubic Interpolated Pseudoparticle) method. The governing equations are approximated on the longitude-latitudinal coordinate system. To avoid the problems resulting from the convergence of the meridians toward high-latitude and singularities on the poles, the semi-Lagrangian and finite volume method are employed. in addition, the CIP method is employed to solve the advection equations and is extended to apply on the equations in the polar coordinate system. The mathematical formulation and numerical results are also described. To verify of the efficiency, accuracy and capability of proposed algorithm, the standard test cases proposed bv Williamson et. al are simulated and the results are compared with other results. As a result, it is found that the present scheme gives a good properties in preserving shapes of solution and settles the pole problems in solving the shallow water equations on the sphere.

Dynamic Analysis and Design of Uncertain Systems Against Random Excitation Using probabilistic Method

  • Moon, Byung-Young;Kang, Beom-Soo;Park, Jung-Hyen
    • Journal of Mechanical Science and Technology
    • /
    • 제16권10호
    • /
    • pp.1229-1238
    • /
    • 2002
  • In this paper, a method to obtain the sensitivity of eigenvalues and the random responses of the structure with uncertain parameters is proposed. The concept of the proposed method is that the perturbed equation of each uncertain substructure is obtained using the finite element method, and the perturbed equation of the overall structure is obtained using the mode synthesis method. By this way, the reduced order perturbed equation of the uncertain system can be obtained. And the response of the uncertain system is obtained using probability method. As a numerical example, a simple piping system is considered as an example structure. The damping and spring constants of the support are considered as the uncertain parameters. Then the variations of the eigenvalues, the correlation function and the power spectral density function of the responses are calculated. As a result, the proposed method is considered to be useful technique to analyze the sensitivities of eigenvalues and random response against random excitation in terms of the accuracy and the calculation time.

진동하는 원주주위 유동의 직접수치해석 (Direct Numerical Simulation of the Flow Past an Oscillating Circular Cylinder)

  • 강신정;타나하시 마모루;미야우치 토시오;이영호
    • 한국전산유체공학회지
    • /
    • 제6권4호
    • /
    • pp.26-34
    • /
    • 2001
  • The flow past a circular cylinder forced to vibrate transversely is numerically simulated by solving the two-dimensional Navier-Stokes equations modified by the vibration velocity of a circular cylinder at a Reynolds number of 164. The higher-order finite difference scheme is employed for the spatial discretization along with the second order Adams-Bashforth and the first order backward-Euler time integration. The calculated cylinder vibration frequency is between 0.60 and 1.30 times of the natural vortex-shedding frequency. The calculated oscillation amplitude extends to 25% of the cylinder diameter and in the case of the lock-in region it is 60%. It is made clear that the cylinder oscillation has influence on the wake pattern, the time histories of the drag and lift forces, power spectral density and phase diagrams, etc. It is found that these results include both the periodic (lock-in) and the quasi-periodic (non-lock-in) state. The vortex shedding frequency equals the driving frequency in the lock-in region but is independent in the non-lock-in region. The mean drag and the maximum lift coefficient increase with the increase of the forcing amplitude in the lock-in state. The lock-in boundaries are also established from the present direct numerical simulation.

  • PDF

진동하는 원주주위 유동의 직접수치해석 (Direct Numerical Simulation of the Flow Past an Oscillating Circular Cylinder)

  • 강신정;;;남청도;이영호
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2001년도 춘계 학술대회논문집
    • /
    • pp.181-188
    • /
    • 2001
  • The flow past a circular cylinder forced to vibrate transversely is numerically simulated by solving the two-dimensional Wavier-Stokes equations modified by the vibration velocity of a circular cylinder at a Reynolds number of 164. The higher-order finite difference scheme is employed for the spatial discretization along with the second order Adams-Bashforth and the first order backward-Euler time integration. The calculated cylinder vibration frequency is between 0.60 and 1.30 times of the natural vortex-shedding frequency. The calculated oscillation amplitude extends to $25\%$ of the cylinder diameter and in the case of the lock-in region it is $60\%$. It is made clear that the cylinder oscillation has influence on the wake pattern, the time histories of the drag and lift forces, power spectral density and phase diagrams, etc. It is found that these results include both the periodic (lock-in) and the quasi-periodic (non-lock-in) state. The vortex shedding frequency equals the driving frequency in the lock-in region but is independent in the non-lock-in region. The mean drag and the maximum lift coefficient increase with the increase of the forcing amplitude in the lock-in state. The lock-in boundaries are also established from the present direct numerical simulation.

  • PDF

통계해석법에 의한 폰툰식 VLFS의 피로강도해석 (Fatigue Strength Analysis of Pontoon Type VLFS Using Spectral Method)

  • 박성환;한정우;한승호;하태범;이홍구;홍사영;김병완;경조현
    • 대한조선학회논문집
    • /
    • 제43권3호
    • /
    • pp.351-361
    • /
    • 2006
  • The fatigue strength analysis of VLFS is carried out by using a 3-dimensional plate finite element model with a zooming technology which performs the modeling of wide portions of the structure by a coarse mesh but the concerned parts by a very fine mesh of t by t level. And a stepwise substructure modeling technique for global loading conditions is applied which uses the motion response of the global structure from 2-D plate hydroelastic analysis as the enforcing nodal displacements of the concern 3-D structural zooming model. Seven incident wave angles and whole ranges of frequency domains of wave spectrum are considered. In order to consider the effect of breakwater, the modified JONSWAP wave spectrum is used. Applying the wave data of installation region, the longterm spectrum analysis is done based on stochastic process and the fatigue life of the structure is estimated. Finally some design considerations from the view point of fatigue strength analysis of VLFS are discussed.

다층 기판위의 대칭 및 비대칭의 다중 결합선로에 대한 해석 (Analysis of Symmetric and Asymmetric Multiple Coupled Line on the Multi-layer Substrate)

  • 김윤석;김민수
    • 전자공학회논문지
    • /
    • 제50권3호
    • /
    • pp.16-22
    • /
    • 2013
  • n 개의 균일한 결합선로를 해석하기 위하여 2n-port 어드미턴스 매트릭스의 추출에 기초한 일반적인 특성화 절차가 제시된다. 본 논문에서는 비대칭 다중 결합선로를 해석하기 위하여 시간영역의 유한차분법을 사용하여 정규화 모드 파라미터 접근법의 적용을 제안한다. 주파수 의존적인 정규화 모드 파라미터는 2n-port 어드미턴스 매트릭스로부터 얻어지고, 이로부터 주파수 의존적인 전파상수와 유효 유전율 및 결합선로의 특성임피던스를 계산할 수 있다. 이 기법을 설명하기 위해 몇몇의 실질적인 다중 유전체상의 결합선로 구조들이 모의 실험되었으며, 특히 전도체가 유전체 사이에 내재된 형태의 선로가 해석되었다. 시간영역 유한 차분법을 활용한 결과는 Spectral Domain Method의 모의실험 결과와 비교하였고, 잘 일치함을 보였다. 시간영역의 특성화 절차에 기인한 유한차분법은 얇거나 두꺼운 혼성 구조 뿐 아니라 다층 PCB상의 다중의 전도체 결합 선로 설계를 위한 훌륭한 광대역 모의실험 도구가 됨을 볼 수 있다.