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Current-Depth Refraction and Diffraction Model for Irregular Waves
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Abstract (JA new set of elliptic wave equations describing the deformations of irregular waves on
a large-scale current field in water of irregular depth is given, and using finite difference scheme
an efficient numerical method is also presented. The elliptic equations are solved in a similar way
to initial value problem. This method is extensively used for the calculation of wave spectral transfor-
mation, and computation results agree very well with experimental data (Hiraishi, 1991). Finally nu-
merical examples are presented concerning the interactions between waves and currents over a mildly
sloping beach and also over a mound.
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1. INTRODUCTION

Waves propagating near a tidal inlet will be tran-
sformed due to currents and irregular water depths.
The wave-current interaction is one of the most in-
teresting and important phenomena for the predic-
tion of wave climate and resultant sediment trans-
port in coastal area. Monochromatic waves may de-
viate by as much as 50 to over 100% from irregular
waves with typical spectral shapes and directional
spreads (Vincent and Briggs, 1989).

Recently, a number of studies have been made
for the analysis of wave-current system. Booij (1981),
Liu (1983) and Kirby (1984) proposed hyperbolic
equations governing the propagation of waves in
water of varying depth and currents in the mild-
slope approximation. They used parabolic approxi-
mation in order to circumvent the difficulty in cal-
culation of elliptic equations for regular waves.

Most of existing models employ parabolic or hy-
perbolic-type differential equations which are in ge-
neral not so efficient to use in large area (order
of hundreds wave length). In shallow water they
need fine grid resolution to meet sufficient accuracy
of numerical results. There is a definite need for
an efficient method for the calculation of irregular
wave transformation over a large coastal area.

2. GOVERNING EQUATIONS AND
NUMERICAL SCHEMES

The mild-slope equation has been used success-
fully as a model equation for describing surface
water waves propagating over a seabed of mild
slope (Berkhoff, 1972). For a wave-current interac-
tion Kirby (1984) derived a general equation. Rece-
ntly Chae e al. (1990) and Jeong (1990) have rederi-
ved the mild-slope equation using variational prin-
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ciple and Green's theorem for linear water waves
following Booij’s method (1981). The equation can
be written as
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where D/Dt=p/ot+U-VV=[(9/ax)i, (3/ayy]), and U
=(uy), ® the complex velocity potential at the
mean surface level, o the intrinsic angular freque-
ncy, k wave number, C and Cg are the phase and
group velocity respectively, which are defined accor-
ding to C=c/k, Cg=go/gk. c’=gktanhkh, and W
dissipation coefficient,

o=c+k-U @)

where o is absolute angular frequency. The velocity
potential at an elevation z is given by

Px, z.)=Az) p(x7) ©)

where fliz)=cosh k(z+h)/cosh kh. Since the bottom
is mildly sloping, the derivative of f with respect
to x will be small. For a monochromatic wave with
frequency o the velocity potential is given by

O(x, )=Re[o(x)e ] @

Substitutions of Eq. (4) into Eq. (3), and further
them into Eq. (1) produce an elliptic equation as
follows:
~i6[2U* Yo+ oV D)1 +(U-V) (U-§)+(V-U)
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If U=(0,0). Eq. (5) reduces to Berkhoffs (1972) mild-
slope equation. Here the complex velocity potential

¢ can be written in terms of the amplitude a and
the phase S as

N .a
o=—ig—¢* ©)
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where g is the acceleration due to gravity, and S(x)
phase function given by
Sx=k-x D

Then Eq. (5) with the substitution of Eq. (6) reduc.s
to a set of elliptic equations by separating the resul-

ting equation into real and imaginary parts as fol-
lows
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a’ 2 a
v-[g;z (©~U-VS)+CCe % VS]+W0 =0 @®)

CCe 2 (VSY—(U-9S ~ o)L + (06— KCCey L -
c o (¢}
a a ay_
V'<Cng)+(V*(_J)<(_] V;)—FQ V<l_] vc)—o 9)

These are the final forms of the wave equation for
this numerical model study. In the present study
we are concerned with the problems where W is
assumed zero for simplicity and the mean current
is in the following condition

|UI*<CCq (10)

Eq. (9) then can be simplified as follows:
a a 5 Py a
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c c o
a
v-(cce®)=0 (11)
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If we set U=(00), equations (8) and (11) reduce
to the ones of Ebersole (1985) model for depth ref-
raction-diffraction. Furthermore the equation of
wave action conservation for steady waves can be
simply obtained from Eq. (1) by defining A= pga®/(2
o). k=VS, and c=w—U-VS. The equation is

V-AU+CY=0 (12)

The main wave direction 6 can be given from Eq.
(13) with the combination of Egs. (8) and (11). The
irrotationality condition of wave number vector is

o(IvSsing) _ g(1vSicosd)
ox oy

=0 (13)

If we neglect wave reflections from boundaries,
and also if approximate intermediate values of wave
properties can be provided at all grid points using
a refraction model, the problem can be converted
into initial value problem for wave diffraction (eg
Ebersole, 1985).

Finite difference method is adopted to solve the
governing equations (8), (11) and (13). The coordi-
nate and grid systems as shown in Figure 1 are
employed. Forward difference scheme is used in
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Fig. 1. Definition of coordinate system, grid cell, and wave
angle conventions.

x-direction and centered scheme in y-direction to
approximate the Eq. (8). Detailed schemes are given
in Jeong (1990).

Input wave conditions are to be given along the
offshore boundary. At side boundaries waves will
be transmitted without reflection. Near the land
boundary waves will break and be fully absorbed.
Initial wave field is defined at all grid points using
Snell's law. Intermediate values of wave heights and
directions over the modelled area can be provided
from current-depth refaction model (eg. Chae and
Song, 1986) in order to calculate wave diffraction.

As we use steady-wave iteration approach, the si-
mple iterative method for the solution of the equa-
tions may have no - stability restrictions (Roache,
1982). The grid size of the present model does not
much depend on wave length, while the restriction
is strictly applied to parabolic and hyperbolic mo-
dels. This is one of the major advantages of the
present model. The computation is made row by
row and proceeds toward the shoreward direction
such as the method for initial value problem.

3. CALCULATION OF WAVE
SPECTRAL CHANGES

The input directional spectrum is defined as

SAf.0)=S() G{f.0) (14)

where S,(/) is the Bretschneider-Mitsuyasu (B-M he-
reafter) frequency spectrum, and G(f,0) is the Mitsu-
yasu type directional spreading function (Goda,
1985).

The frequency spectrum and directional sprea-
ding function are divided into equal segments. The
lower and upper frequency limits of the spectrum
are 007 Hz and 037 Hz. Af=002 Hz (15 frequency
bins) and AB=10° (17 directional bins) are used.

The input wave amplitude for a particular freqﬁe—
ncy-directional component is a,=v/ W
The resulting wave amplitude at any location can
be computed using the model, and then the trans-
formed spectrum S(f,0) can be obtained as

S(f.8)=(a/a,}* Sif,6) (15)

Applying the govering equations to each compo-
nent of directional spectrum transformed solutions
can easily be obtained.

4. COMPUTATION RESULTS AND
DISCUSSIONS

Some results of the computations are compared
with analytical solutions (Jeong, 1990), and to de-
monstrate the applicability of the equations and
methods, numerical computations are made for two
cases. The first case is for the refraction-diffraction
due to rip-current in a mild sloping beach as shown
in Figure 2 (studied by Arthur, 1950).

The computational domain is divided into square
grids (Ax=Ay=10m) and numerical calculations
are performed. Normal incident waves of H,=1m,
T=8 are used as an incident wave condition at
the offshore boundary. The dimensionless wave hei-
ghts, H/H,, for two transections are plotted in Figure
3. For the purpose of comparison, parabolic model
results (Kirby, 1984) are also shown in the same
figure. A comparison of the figures shows that they
are in good agreement.

The second case is for irregular wave propagation
over a shoal as shown in Figure 4, which was rece-
ntly simulated on a hydraulic laboratory equipped
with multi-directional random wave generators (Hi-
raishi, 1991). The shoal is similar to that used in
the experiments of Ito and Tanimoto (1972) with
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Fig. 3. Wave height relative to incident was for waves in-
" teracting with rip-current.

a minimum water depth of 0.05 m at the center
of the shoal and constant depth (0.15 m) in the re-
gion outside the shoal. B-M spectrum is used for
the input spectrum for which H,;=0.1m, T;x=15s,
and Sp=75 (narrow directional spectrum) are
used. The grid sizes used are Ax=Ay=0.1m. The
results are presented in Figure 5, in the form of
normalized wave height against the input wave hei-
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Fig. 4. Experimental configuration (Hiraishi, 1991).

23 '} « Experimental data
20 Sy =175 o Numerical result
:ﬁ' 1 5_1
= 1.0 ] . st
0.5 |
0.0 . ; . . . : T )
1 2 3 4 s s 1 8
wh,
2.5
oo ] Spae = 75
g 1S
i I-D ] b—/-\Q
0.5 |
UO T T T T T
1 2 3y 5
il

Fig. 5. Comparisons between present model results and
experimental data.

ght. The computations agree very well with experi-
mental data which are for the case of non-breaking
waves. As the frequency and directional spectra are
not available, the comparison between computation
and experiment are not be made for those spectra.
However, the spectrum can be simulated by linear
superposition of monochromatic wave components
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Fig. 6. Input frequency spectra (S,(f)) and output frequency
spectra (S()) at x/L,=7, y/L,=3.

(eg. Panchang et al., 1990). From those comparisons,
the present model appears to be used effectively
for the calculation of irregular wave propagation
with respect to computation accuracy and times (26
min. with IBM 386 PC).

The present model is used for the analysis of
irregular wave transformation due to combined ref-
raction-diffraction while the waves propagate over
a circular shoal (Ito and Tanimoto, 1972). The input
spectrum is descretized into segments of Af ‘and
AO. H;=10m and T,;=50s are used for the fre-
quency spectrum (Figure 6) and angular spreading
parameter Sp.x=25 and 75 for the broad and nar-
row directional spectra, respectively. Current velocity
fields are generated using a standard depth-averaged
flow model, and assumed frozen during the wave
propagation over the field. A uniform current field
is assumed at the incoming boundary where the
maximum velocity is 0.5 m/s.

The results are shown in Figures 6 and 7, the
frequency and frequency-directional spectra are for
opposing and following current conditions, and also
for broad and narrow directional spreading condi-
tions at a specified points (x/L,=7, y/L,=3) behind
the circular shoal.

As shown in Figure 7, we can clearly see the
differences on spectral shapes of input S.(f,0) depe-
nding on the value of Sp.. The smaller value of

PSD. (m%(hzx md)100:

Fig. 7. Input directional spectra (S,(f,0)) and output direc-
tional spectra (S{f,0)) at x/L,=7, y/L,=3 for diffe-
rent Smax and current conditions. (a) S(f; 6), (b) S(f.
0) with following current, (c) S(f,0) with opposing
current.

Smax vields less peaky spectral shape and broader
band of energy distribution than those with larger
Smax- When the waves propagate on a current field,
the wave height and direction are strongly depen-
dent on the magnitude and direction of the current.

In the following current field the velocities over
the shoal are generally larger than those in the
other region. This will increase the celerity and dec-
rease focusing effect of wave rays propagating over
that region, but in the opposing current the effect
will be adverse. Such a wave-current interaction
causes a large peak around centered direction in
the opposing current field and a small peak with
side humps in the following current. The waves with
directionally narrow banded spectrum will produce
very sharp peak, which is contributed mainly from
the peak region.

The computed frequency spectra are shown in
Figure 6. The spectral peaks are almost at the same
frequency, and the amplification is prominent in
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Fig. 8. Wave height comparisons, for narrow and broad
directional spectra.

the peak frequency region, where the current effects
are also dominant. '
The propagation of wave spectra with narrow or
broad directional spread shows a little difference
between the wave heights in the following and op-
posing current conditions. The wave heights in the
opposing current field are generally larger than
those in the following current field (Figure 8).

5. CONCLUSIONS

A set of elliptic type mild-slope equations has
been derived for wave-current interactions over a
slowly varying topography. Numerical computation
method to solve the equations has been presented.
The model solves the elliptic equations in a way
similar to an initial value problems. Accuracy of
numerical computation does not greatly depend on
grid size. It can be said that the present model is
efficient for wave propagation problems in a large
coastal area. Numerical results are shown for the
transformation of waves propagating on a rip-cur-
rent in a mildly sloping beach. They are in good
agreement with published ones (Kirby, 1984). It is
also shown that the spectral transformation of irre-
gular wave can be satisfactorily simulated by sum-
ming up the results from a monochromatic refrac-
tion-diffraction model for component waves of a
spectrum. From the analysis of frequency-directional
spectrum for waves propagating on currents flowing
over a mound we can see large differences in spec-

tra depending on current directions, but there is
a little difference in wave heights. When the waves
propagate on strong currents in shallow water, non-
linearity of the waves and wave breaking will be
significant, and therefore this model should not be
applied.
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