• 제목/요약/키워드: finite element method(FEM) modal analysis

검색결과 125건 처리시간 0.026초

Assessment of seismic behavior stone bridge using a finite element method and discrete element method

  • Naderi, Melika;Zekavati, Mehdi
    • Earthquakes and Structures
    • /
    • 제14권4호
    • /
    • pp.297-303
    • /
    • 2018
  • Seismic behavior of Osmanli and Senyuva stone bridges was addressed in this study. A combination of FEM and DEM was employed for getting closer to the real behavior of the bridge. One of the unique features of this combinational method is simulation close to reality. Modal numerical analysis was also used to verify the modeling. At the end of earthquake, a part of two lateral walls of Osmanli bridge was broken. The growth of arch cracks also increased during the earthquake. A part of right-hand wall of Senyuva Bridge was destructed during the earthquake. The left-hand side of the bridge wall was damaged during the earthquake but was not destructed.

A new method for optimal selection of sensor location on a high-rise building using simplified finite element model

  • Yi, Ting-Hua;Li, Hong-Nan;Gu, Ming
    • Structural Engineering and Mechanics
    • /
    • 제37권6호
    • /
    • pp.671-684
    • /
    • 2011
  • Deciding on an optimal sensor placement (OSP) is a common problem encountered in many engineering applications and is also a critical issue in the construction and implementation of an effective structural health monitoring (SHM) system. The present study focuses with techniques for selecting optimal sensor locations in a sensor network designed to monitor the health condition of Dalian World Trade Building which is the tallest in the northeast of China. Since the number of degree-of-freedom (DOF) of the building structure is too large, multi-modes should be selected to describe the dynamic behavior of a structural system with sufficient accuracy to allow its health state to be determined effectively. However, it's difficult to accurately distinguish the translational and rotational modes for the flexible structures with closely spaced modes by the modal participation mass ratios. In this paper, a new method of the OSP that computing the mode shape matrix in the weak axis of structure by the simplified multi-DOF system was presented based on the equivalent rigidity parameter identification method. The initial sensor assignment was obtained by the QR-factorization of the structural mode shape matrix. Taking the maximum off-diagonal element of the modal assurance criterion (MAC) matrix as a target function, one more sensor was added each time until the maximum off-diagonal element of the MAC reaches the threshold. Considering the economic factors, the final plan of sensor placement was determined. The numerical example demonstrated the feasibility and effectiveness of the proposed scheme.

신체의 Stiffened Plate 구조물의 모우드해석과 최적변경법에 관한 연구 (Study on the Optimum Modification and Modal Analysis of Stiffened Plate of Ship Hull Structure)

  • 박성현;박석주;고재용
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2000년도 제 25회 정기총회 및 추계학술발표회
    • /
    • pp.51-58
    • /
    • 2000
  • The purpose of this study is the optimum modification of dynamic characteristics of stiffened plate structure. In the method of the optimization ,finite element method (FEM), sensitivity analysis and optimum structural modification method are used. To begin with, using FEM, the dynamic characteristics of stiffened plate structure is analyzed. Next, rate of change of dynamic characteristic by the change of design variable is calculated using the sensitivity analysis. Then, amount of change of design variable is calculated using this sensitivity value and optimum structural modification method. The change of natural frequency is made to be an objective function. Thickness of plate and cross section moment become a design variable. It is shown that the results are effective in the optimum modification for dynamic characteristics of the stiffened plate structure.

  • PDF

회전 디스크-스핀들, 액츄에이터와 지지구조의 유연성을 고려한 하드 디스크 드라이브의 고유 및 강제 진동 해석 (Free and Forced Vibration Analysis of a Hard Disk Drive Considering the Flexibility of Spinning Disk-Spindle, Actuator and Supporting Structure)

  • 서찬희;장건희;이호성
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 춘계학술대회논문집
    • /
    • pp.660-665
    • /
    • 2006
  • This paper presents a finite element method to analyze the free and forced vibration of a hard disk drive (HDD) considering the flexibility of a spinning disk-spindle with fluid dynamic bearings (FDBs), an actuator with pivot bearings, an air bearing between head-disk interface and the base with complicated geometry. Finite element equation of each component is consistently derived with the satisfaction of the geometric compatibility of the internal boundary between each component. The spinning disk, hub and FDBs are modeled by annular sector elements, beam elements and stiffness and damping elements, respectively. The actuator am, E-block, suspension and base plate are modeled by tetrahedral elements. The pivot bearing in the actuator and the air bearing between head-disk interfaces are modeled by the stiffness element with five degrees of freedom and the axial stiffness, respectively. A global matrix equation obtained by assembling the finite element equations of each substructure is transformed to a state-space matrix-vector equation, and both damped natural frequencies and modal damping ratios are calculated by solving the associated eigenvalue problem with the restarted Arnoldi iteration method. Modal and shock testing are performed to show that the proposed method well predicts the vibration characteristics of a HDD.

  • PDF

긴 유연힌지를 갖는 컴플라이언스 메커니즘의 동역학 모델 (Dynamic Model for Compliant Mechanism with Long Flexure Hinges)

  • 최기봉
    • 한국정밀공학회지
    • /
    • 제22권3호
    • /
    • pp.61-67
    • /
    • 2005
  • A dynamic model for flexure hinge-based compliant mechanisms is derived. The dynamic model of the previous works do not well describe the behaviors of rigid bodies in the compliant mechanism when the length of the flexure hinge is long. In this study, the effect on the length of the flexure hinge is pointed out and then the dynamic model is derived to overcome the length effect. For verification, modal analyses are carried out using the proposed dynamic model and FEM (Finite Element Method). Finally they are compared by the terms of modal frequency. As the result, the proposed dynamic model can be used in design and analysis of the compliant mechanism.

고가사다리차의 알루미늄 붐 형상의 최적설계에 관한 연구 (A Study on the Optimal Design for Aluminum Boom Shape in High Ladder Vehicles)

  • 김홍건;나석찬;홍동표;조남익
    • 한국공작기계학회논문집
    • /
    • 제16권3호
    • /
    • pp.96-102
    • /
    • 2007
  • An Optimal shape design of the boom system in high ladder vehicles is performed using 3-D finite element method (FEM). Results of structural analyses providing displacements, stresses are implemented for the optimum shape design. Lanzcos algorithm is used for the modal analysis in order to find natural frequencies. The optimal shape including cross sectional thickness and length of the boom system is controlled by the subproblem method besed on displacement and Von Mises stress. It is found that a plenty of materials can be saved by using shape design optimization in high ladder vehicles. It is also found that the natural frequency is increased until 6th mode and maintained similarly or decreased after 6th mode.

회전 효과를 고려한 광디스크 드라이브의 충격해석 (Shock Analysis of Optical Disk Drive Considering Rotational Effect)

  • 임승호;박노철;박영필;황효균;서정교;유승헌;최인호;민병훈
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2008년도 춘계학술대회논문집
    • /
    • pp.622-625
    • /
    • 2008
  • SIL-based optical disk drive will be promising candidate of next-generation storage devices. However, a near-field optical disk drive requires the robustness to external shock because of extremely small gap between SIL and media. Especially, high-level shock damages permanently to SIL and it makes difficulties in general application. To study the likelihood of failure, the shock analysis must be performed over all others. This research explores the dynamic characteristics of rotating disk through FEM which is compared to analytical solution and experimental modal analysis. We also develop the finite element model of an optical disk drive, which includes rubber mounts, sled base, rotating disk and pickup assembly, and simulate the shock response.

  • PDF

Numerical analysis for free vibration of hybrid laminated composite plates for different boundary conditions

  • Benhenni, Mohammed Amine;Daouadji, Tahar Hassaine;Abbes, Boussad;Abbes, Fazilay;Li, Yuming;Adim, Belkacem
    • Structural Engineering and Mechanics
    • /
    • 제70권5호
    • /
    • pp.535-549
    • /
    • 2019
  • This study aimed to develop a high-order shear deformation theory to predict the free vibration of hybrid cross-ply laminated plates under different boundary conditions. The equations of motion for laminated hybrid rectangular plates are derived and obtained by using Hamilton's principle. The closed-form solutions of anti-symmetric cross-ply and angle-ply laminates are obtained by using Navier's solution. To assess the validity of our method, we used the finite element method. Firstly, the analytical and the numerical implementations were validated for an antisymmetric cross-ply square laminated with available results in the literature. Then, the effects of side-to-thickness ratio, aspect ratio, lamination schemes, and material properties on the fundamental frequencies for different combinations of boundary conditions of hybrid composite plates are investigated. The comparison of the analytical solutions with the corresponding finite element simulations shows the good accuracy of the proposed analytical closed form solution in predicting the fundamental frequencies of hybrid cross-ply laminated plates under different boundary conditions.

초정밀 선형 모터의 열$\cdot$진동 분석 (Analysis of Heat and Vibration of Super-Precision Linear Motors)

  • 이우영;임경화;설진수;김현철
    • 반도체디스플레이기술학회지
    • /
    • 제4권1호
    • /
    • pp.1-8
    • /
    • 2005
  • Linear motor can be directly applied to the system needed linear motions without rotary motions. To control high-speed and high-resolution, the development of the linear motors is recently required in the high-integrated and speed process industry This paper presents thermal and vibration analyses as well as measurement standards of the newly developed linear motors through analyzing the thermal behaviors and vibration characteristics of the advanced products. The thermal measurements are conducted for comparing the developed linear motor with the advanced linear motor and the Finite Volume Method(FVM) is used to identify the measurement results. And then the vibration measurement are carried out in the developed and advanced linear motors with respect to the speed. To identify the measurement results, the Finite Element Method is utilized in the developed and advanced linear motors, respectively. The FVM, FEM, and experiments make it possible to understand these characteristics. The improvement is suggested through their results conducted experiment and analyses.

  • PDF

FEM 을 이용한 리브 부착에 따른 실린더 형상물의 모드 특성 비교 (Comparison of the effect of ribs on cylindrical structure using FEM)

  • 강귀현;김호산;박상길;이유엽;오재응
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 추계학술대회논문집
    • /
    • pp.1293-1296
    • /
    • 2007
  • In this paper, present a finite element method to reduce vibration of a cylindrical structure by avoiding resonance between motor and structure. To analysis the modes of structure, some different FE models (different places and combinations of ribs) of the structure with free-free condition were built and compared.

  • PDF