긴 유연힌지를 갖는 컴플라이언스 메커니즘의 동역학 모델

Dynamic Model for Compliant Mechanism with Long Flexure Hinges

  • 최기봉 (한국기계연구원 지능형정밀기계연구부)
  • 발행 : 2005.03.01

초록

A dynamic model for flexure hinge-based compliant mechanisms is derived. The dynamic model of the previous works do not well describe the behaviors of rigid bodies in the compliant mechanism when the length of the flexure hinge is long. In this study, the effect on the length of the flexure hinge is pointed out and then the dynamic model is derived to overcome the length effect. For verification, modal analyses are carried out using the proposed dynamic model and FEM (Finite Element Method). Finally they are compared by the terms of modal frequency. As the result, the proposed dynamic model can be used in design and analysis of the compliant mechanism.

키워드

참고문헌

  1. Paros, J. M. and Weisbord, L., 'How to Design Flexure Hinges,' Machine Design, Vol. 37, pp. 151-156,1965
  2. Yoshimura, Y., 'Analysis on Stiffness of Elastic Hinges,' J. of Japan Society for Precision Engineering (in Japanese), Vol. 64, No. 11, pp. 1589-1593, 1998 https://doi.org/10.2493/jjspe.64.1589
  3. Koseki, Y., Tanikawa, T. and Koyachi, N., 'Kinematic Analysis of Translational 3-DOF Micro Parallel Mechanism Using Matrix Method,' In Proceedings of the 2000 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 786-792, 2000 https://doi.org/10.1109/IROS.2000.894700
  4. Lobontiu, N. and Paine, J. S. N., 'Design of Circular Cross-Section Corner-Filleted Flexure Hinges for Three-Dimensional Compliant Mechanisms,' Journal of Mechanical Design, Vol. 124, pp. 479-484,2002 https://doi.org/10.1115/1.1480022
  5. Lobontiu, N., Paine, J. S. N., O'Malley, E. and Samuelson, M., 'Parabolic and Hyperbolic Flexure Hinges: Flexibility, Motion Precision and Stress Characterization Based on Compliance Closed-From Equations,' Precision Engineering, Vol. 26, pp. 183-192, 2002 https://doi.org/10.1016/S0141-6359(01)00108-8
  6. Elmustafa, A. A. and Lagally, M. G., 'Flexural-hinge Guided Motion Nanopositioner Stage for Precision Machining: Finite Element Simulations,' Precision Engineering, Vol. 25, pp. 77-81, 2001 https://doi.org/10.1016/S0141-6359(00)00058-1
  7. Chang, S. H., Tseng, C. K. and Chien, H. C., 'An Ultra-precision $XY{\theta}_z$ Piezo-Micropositioner Part I: Design and Analysis,' IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, Vol. 46, No.4, pp. 897-905, 1999 https://doi.org/10.1109/58.775656
  8. Smith, S. T., Chetwynd, D. G. and Bowen, D. K., 'Design and Assessment of Monolithic High Precision Translation Mechanisms,' J. Phys. E: Sci. Instrum. Vol. 20, pp. 977-983, 1987 https://doi.org/10.1088/0022-3735/20/8/005
  9. Yang, R., Jouaneh, M. and Schweizer, R., 'Design and Characterization of a Low-Profile Micro positioning Stage,' Precision Engineering, Vol. 18, pp. 20-29, 1996 https://doi.org/10.1016/0141-6359(95)00032-1
  10. Gao, P., Tan, H. and Yuan, Z., 'The Design and Characterization of a Piezo-driven Ultra-precision Stepping Positioner,' Meas. Sci. Technol., Vol.11, N15-N19, 2000 https://doi.org/10.1088/0957-0233/11/2/401
  11. Scire, F. E. and Teague, E. C., 'Piezodriven 50-${\mu}m$ Range Stage with Subnanometer Resolution,' Rev. Sci. Instrum., Vol. 49, No. 12, pp. 1735-1740, 1978 https://doi.org/10.1063/1.1135327
  12. Ryu, J. W., 6-Axis Ultraprecision Positioning Mechanism Design and Positioning Control, PhD. thesis, Korea Advanced Institute of Science and Technology, 1997
  13. Smith, S. T., Flexures: Elements of Elastic Mechanisms, Gordon and Breach Science Publishers, 2000
  14. Craig, J. J., Introduction to Robotics: Mechanics & Control, Addison-Wesley Publishing Company, 1986