• Title/Summary/Keyword: finite base

Search Result 685, Processing Time 0.027 seconds

Early Age Cracking Analysis of Massive Concrete Base Slab with Enhanced Microplane Model (개선된 미소면 모델을 적용한 매스콘크리트 기초슬래브의 초기균열거동 해석)

  • Lee, Yun;Kim, Jin-Keun;Woo, Sang-Kyun;Song, Young-Chul;Yi, Seong-Tae
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.458-461
    • /
    • 2006
  • Early age cracking of concrete is a widespread and complicated problem, and diverse applications in practical engineering have focused on this issue. Since massive concrete base slab composes the infrastructure of other concrete structures such as pier, concrete dam, and high rise buildings, early age cracking of that is considered as a crucial problem. In this study, finite element analysis (FEA) implemented with the age-dependent microplane model was performed. For a massive concrete base slab, cracking initiation and propagation, and deformation variation were investigated with concrete age. In massive concrete slab, autogenous shrinkage increases the risk of early age cracking and it reduces reinforcement effect on control of early age cracking. Gradual crack occurrence is experienced from exterior surface towards interior of the slab in case of combined hydration heat and autogenous shrinkage. FEA implemented with enhanced microplane model successfully simulates the typical cracking patterns due to edge restraint in concrete base slab.

  • PDF

Spares Provisioning Problem for Repairable Items (수리가능 제품의 여유재고 비축문제)

  • 유형근;김만식;김종수
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.13 no.22
    • /
    • pp.17-24
    • /
    • 1990
  • The inventory problem of the repairable items is modeled as a queueing network for the purpose of determining the number of spares in a multi-echelon repair system subject to stochastic failure. In this paper, we are considering a finite number of repairman at each base and the depot. After repair job has completed, the repaired items are returned to the base where they have originated. For the system, we identify the distribution of the total number of failed items which belongs to a base and develope a method to find spare inventory levels of the repairable items at each base to satisfy a specified minimum fill rate.

  • PDF

Admittance Analysis for Piezo Shunt Circuit with Application to CD-ROM Main Base (CD-ROM 메인 베이스에 적용한 압전 션트 회로의 어드미턴스 해석)

  • Kim Heung Soo;Park Jong-Sulg;Choi Seung-Bok;Park Yeong-Pil
    • 정보저장시스템학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.235-240
    • /
    • 2005
  • In this paper, vibration suppression of a CD-ROM main base with piezoelectric shunt circuit is studied. Admittance is introduced to predict the performance of piezoelectric shunt damping. Numerical admittance obtained by commercial finite element code, ANSYS, correlates well with experimentally measured one. Multi-mode piezoelectric shunt damping is realized based on the target mode and frequencies obtained by the admittance analysis. Experimental results prove that admittance of the piezoelectric structure is capable of predicting the performance of piezoelectric shunt damping and the vibration of the main base with the piezoelectric patches is reduced effectively.

  • PDF

The Method of Determinating the Spare Inventory Level in the Repairable Munition System (수리가능한 군수품의 여유재고수준 결정기법)

  • Yu Hyeong-Geun;Kim Man-Sik;Kim Jong-Su
    • Journal of the military operations research society of Korea
    • /
    • v.16 no.2
    • /
    • pp.96-104
    • /
    • 1990
  • This paper concerns the problem of deciding the rational spare inventory levels for efficient use of a limited defence budget and, at the same time, for enhancing the operation rate of equipement/weapons in the army. The system we are concerned has a finite number of repairmen at each base and the depot. After repair job has completed, the repaired items are returned to the base where they have originated. For the system, we identify the distribution of the total number of failed items which belong to a base and develope a method to find spare inventory levels of repairable items at each base to satisfy a specified minimum fill rate.

  • PDF

Admittance Analysis for Piezo Shunt Circuit with Application to CD-ROM Main Base (CD-ROM 메인 베이스에 적용한 압전 션트 회로의 어드미턴스 해석)

  • Kim, Heung-Soo;Park, Jong-Sung;Choi, Seung-Bok;Park, Young-Pil
    • Transactions of the Society of Information Storage Systems
    • /
    • v.2 no.1
    • /
    • pp.7-12
    • /
    • 2006
  • In this paper, vibration suppression of a CD-ROM main base with piezoelectric shunt circuit is studied. Admittance is introduced to predict the performance of piezoelectric shunt damping. Numerical admittance obtained by commercial finite element code, ANSYS, correlates well with experimentally measured one. Multi-mode piezoelectric shunt damping is realized based on the target mode and frequencies obtained by the admittance analysis. Experimental results prove that admittance of the piezoelectric structure is capable of predicting the performance of piezoelectric shunt damping and the vibration of the main base with the piezoelectric patches is reduced effectively.

  • PDF

FINITE ELEMENT ANALYSIS OF MANDIBULAR STRESSES AND DENTURE MOVEMENTS INDUCED BY OVERDENTURES (Overdenture 하에서 하악응력 및 의치의 변위에 관한 유한요소법적 분석)

  • Kim, Joung-Hee;Chung, Chae-Heon;Cho, Kyu-Zong
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.28 no.1
    • /
    • pp.63-94
    • /
    • 1990
  • The purpose of this study was to analyze the displacement and the magnitude and the mode of distribution of the stresses in the lower overdenture, the mucous membrane, the abutment tooth and the mandibular supporting bone when various denture base materials, such as acrylic resin and 0.5mm metal base, and various denture base designs were subjected to different loading schemes. For this study, the two-dimensional finite element method was used. Mandibular arch models, with only canine remaining, were fabricated. In the first denture base design, a space, approximately 1mm thick, was prepared between the denture and the dome abutment. In the second denture base design, contact between the denture and the dome abutment was eliminated except the contact of the occlusal third of the abutment. In order to represent the same physiological condition as the fixed areas of the mandible under loading schemes, the eight nodes which lie at the mandibular angle region, the coronoid process and the mandibular condyle were assumed to be fixed. Each model was loaded with a magnitude of 10 kgs on the first molar region(P1) and 7 kgs on the central incisal region (P2) in a vertical direction. Then the force of 10 kgs was applied distributively from the first premolar to the second molar of each model in a vertical direction(P3). The results were as follows. : 1. When the testing vertical loads were given to the selected points of the overdenture, the overdenture showed the rotatory phenomenon, as well as sinking and the displacements of alveolar ridge, abutment and lower border of mandible under the metal base overdenture were less than those under the acrylic resin overdenture. 2. The maximum principal stresses(the maximum tensile stresses) being considered, high tensile stresses occured at the buccal shelf area, the posterior region of the ridge crest and the anterior border region of the mandibular ramus. 3. The minimum principal stresses(the maximum compressive stresses) being considered, high compressive stresses occured at the inferior and posterior border region of the mandible, the mandibular angle and the posterior border region of the mandibular ramus. 4. The vertical load on the central incisal region(P2) produced higher equivalent stress in the mandible than that on any other region(P1, P3) because of the long lever arm distance from the fixed points to the loading point. 5. Higher equivalent stresses were distributed throughout the metal base overdenture than the resin base overdenture under the same loading condition. 6. The case of occlusal third contact of the abutment to the denture produced higher equivalent stresses in the abutment, the mandibular area around the abutment and the overdenture than the case of a 1mm space between the denture and the abutment. 7. Without regard to overdenture base materials and designs, the amounts and distribution patterns of equivalent stresses under the same loading condition were similar in the mucous membrane.

  • PDF

The System Performance of Wireless CSMA/CA Protocol with Capture Effect

  • Dai, Jiang-Whai
    • Journal of Communications and Networks
    • /
    • v.6 no.3
    • /
    • pp.226-234
    • /
    • 2004
  • This work presents a deterministic channel that rules according to inverse a power propagation law. The proposed channel model allows us to derive the lower bound and upper bound of packet's capture probability in Rayleigh fading and shadowing cellular mobile system. According to these capture probabilities, we analyze the system performance in the case of finite stations and finite communicated coverage of a base station. We also adopted a dynamic backoff window size to discuss the robustness of IEEE 802.11 draft standard. Some suggestions and conclusions from numerical results are given to establish the more strong CSMA/CA protocol.

Effects of infill walls on RC buildings under time history loading using genetic programming and neuro-fuzzy

  • Kose, M. Metin;Kayadelen, Cafer
    • Structural Engineering and Mechanics
    • /
    • v.47 no.3
    • /
    • pp.401-419
    • /
    • 2013
  • In this study, the efficiency of adaptive neuro-fuzzy inference system (ANFIS) and genetic expression programming (GEP) in predicting the effects of infill walls on base reactions and roof drift of reinforced concrete frames were investigated. Current standards generally consider weight and fundamental period of structures in predicting base reactions and roof drift of structures by neglecting numbers of floors, bays, shear walls and infilled bays. Number of stories, number of bays in x and y directions, ratio of shear wall areas to the floor area, ratio of bays with infilled walls to total number bays and existence of open story were selected as parameters in GEP and ANFIS modeling. GEP and ANFIS have been widely used as alternative approaches to model complex systems. The effects of these parameters on base reactions and roof drift of RC frames were studied using 3D finite element method on 216 building models. Results obtained from 3D FEM models were used to in training and testing ANFIS and GEP models. In ANFIS and GEP models, number of floors, number of bays, ratio of shear walls and ratio of infilled bays were selected as input parameters, and base reactions and roof drifts were selected as output parameters. Results showed that the ANFIS and GEP models are capable of accurately predicting the base reactions and roof drifts of RC frames used in the training and testing phase of the study. The GEP model results better prediction compared to ANFIS model.

Design of the Base for the Onboard Installed Equipment to Minimize Structure-borne Noise (구조전달소음 최소화를 위한 함정탑재장비의 베이스 설계)

  • Han, HyungSuk;Lee, KyoungHyun;Park, SungHo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.6
    • /
    • pp.432-439
    • /
    • 2015
  • In order to reduce the structure borne noise of the equipment sufficiently, its exciting force should be restricted and additional anti-vibration devices such as resilient mount and bellows should be applied. Since the structure borne noise is dependent on the design of the base for the equipment, it is very important to design the base with low vibration. Therefore, in this research, various types of the base design for the shipboard equipment are investigated to reduce the structure borne noise. In order to design the base with low vibration, the exciting force at the center of the gravity of the equipment is firstly defined through the experiment. Using the exciting force identified by experiments, various types of base designs for the typical turbo machine are evaluated by FEM(finite element method) analysis.