• Title/Summary/Keyword: fineness of cement

Search Result 151, Processing Time 0.027 seconds

Effect of Fineness of GGBS on the Hydration and Mechanical Properties in HIGH Performance HVGGBS Cement Paste (고성능 하이볼륨 슬래그 시멘트 페이스트의 고로슬래그 미분말 분말도에 따른 수화 및 강도 특성)

  • Choi, Young Cheol;Shin, Dongcheol;Hwang, Chul-Sung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.5
    • /
    • pp.141-147
    • /
    • 2017
  • Recently, lots of researches on concrete with high volume mineral admixtures such as ground granulated blast-furnace slag(GGBS) have been carried out to reduce greenhouse gas. The high volume GGBS concrete has advantages such as low heat, high durability, but it has a limitation in practical field application, especially low strength development in early ages. This study investigated the compressive strength and hydration characteristics of high performanc and volume GGBS cement pastes with low water to binder ratio. The effects of fineness($4,330cm^2/g$, $5,320cm^2/g$, $6,450cm^2/g$, $7650cm^2/g$) and replacement(35%, 50%, 65%, 80%) of GGBS on the compressive strength, setting and heat of hydration were analyzed. Experimental results show that the combination of high volume slag cement paste with low water to binder ratio and high fineness GGBS powder can improve the compressive strength at early ages.

Theoretical prediction on thickness distribution of cement paste among neighboring aggregates in concrete

  • Chen, Huisu;Sluys, Lambertus Johannes;Stroeven, Piet;Sun, Wei
    • Computers and Concrete
    • /
    • v.8 no.2
    • /
    • pp.163-176
    • /
    • 2011
  • By virtue of chord-length density function from the field of statistical physics, this paper introduced a quantitative approach to estimate the distribution of cement paste thickness between aggregates in concrete. Dynamics mixing method based on molecular dynamics was employed to generate one model structure, then image analysis algorithm was used to obtain the distribution of thickness of cement paste in model structure for the purpose of verification. By comparison of probability density curves and cumulative probability curves of the cement paste thickness among neighboring aggregates, it is found that the theoretical results are consistent with the simulation. Furthermore, for the model mortar and concrete mixtures with practical volume fraction of Fuller-type aggregate, this analytical formula was employed to predict the influence of aggregate volume fraction and aggregate fineness. And evolution of its mean values were also investigated with the variation of volume fraction of aggregate as well as the fineness of aggregates in model mortars and concretes.

Effect of blast-furnace slag particle fineness changes on the engineering characteristics of mortar (고로슬래그 미분말의 분말도 변화가 모르타르의 공학적 특성에 미치는 영향)

  • Lee, Jae-Jin;Moon, Byeong-Ryong;Park, Yong-Jun;Joo, Eun-Hui;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.10a
    • /
    • pp.102-103
    • /
    • 2016
  • Recently on construction sites, there is increased use of concrete with large quantities of blast-furnace slag(BS) admixture replacements, for purposes of reducing CO2 created from cement, one of the ingredients of concrete. But such high-BS fineness changes can have a huge effect on the quality of mortar and concrete. Therefore in this study an experiment was conducted in which liquidity and intensity of mortar depending on an artificially-applied change in fineness degree at degree 7. The results, though subtle, were that the larger the fineness degree, liquidity increased and air quantity decreased, and compression and flexural strength increased.

  • PDF

Effects of Limestone Powder on the Fluidity of Ordinary Portland Cement Paste (보통 포틀랜드 시멘트 페이스트의 유동특성에 미치는 석회석 미분말의 영향)

  • Lee, Seung-Heun;Park, Jeong-Soo;Lee, Jeong-In;Cho, Jae-Woo
    • Journal of the Korean Ceramic Society
    • /
    • v.50 no.2
    • /
    • pp.149-156
    • /
    • 2013
  • This study examines the effects of limestone's factors on the fluidity of cement paste when of up to 15%. As the substitution ratio of limestone powder increases, the fluidity of the paste is also improved; however, it has no correlation to the $CaCO_3$ content of the limestone, fineness of the limestone, and fluidity of the pastes. Regardless of clay content of the limestone, it showed a similar mini-slump, so there was no correlation between the clay content and the fluidity of the paste. Also, the total organic carbon content of the limestone and the fluidity of the paste showed no correlation. Regardless of the limestone's grade or fineness, n value of powder gained by using the Rosin-Rammler distribution function showed that the fluidity of the paste increased as the n value reduced. It was also shown that particle size distribution of ordinary Portland cement with limestone powder had a major effect on the fluidity of the paste.

Effect of Limestone Fineness on Physical Properties and Environmental Impact of Cement (석회석의 분말도가 시멘트의 물리적 특성 및 환경에 미치는 영향)

  • In-Gyu Kang;Jin-Man Kim;Sang-Chul Shin;Geon-Woo Kim;Tae-Yun An
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.12 no.1
    • /
    • pp.82-93
    • /
    • 2024
  • Since the cement industry generates more than 60 % of CO2 during the clinker production process, supplementary cementitious materials are used worldwide to reduce CO2 efficiently. Mainly used supplementary cementitious materials such as blast furnace slag and fly ash, which are used in various industries including the cement industry, concrete admixtures, and ground solidification materials. However, since their availability is expected to decrease in the future according to the carbon neutrality strategy of each industry, new supplementary cementitious materials should be used to achieve the cement industry's goal for increasing the additive content of Portland cement. Limestone is a material that already has a large amount in the cement industry and has the advantage of high grinding efficiency, so overseas developed countries established Portland limestone cement standards and succeeded in commercialization. This study was an experimental study conducted to evaluate the possibility of utilizing domestic PLC, the effect of fineness and replacement ratio on the physical properties of cement was investigated, and the environmental impact of cement was evaluated by analyzing CO2 emissions.

Pozzolanic reaction of classified fly ash (분급 플라이애쉬의 포졸란반응 특성)

  • Lee, Seung-Heun;Hwang, Hae-Jeong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.753-756
    • /
    • 2006
  • This paper discussed pozzolanic reaction properties of classified fly ashes by using of electrostatic precipitator. Blaine values of fly ashes at hoppers are respectively about 3000(ordinary), 5000(fine) and 8000cm2/g(super-fine). The pozzolanic reactivity of fly ash at early stage and at later stage are respectively related to the related to the fineness and the glass content of fly ash. But the early hydration of cement was retarded by addition of super fine fly ashes. the adiabatic temperature rise of mortar containing fly ash is increased with the fineness of fly ashes.

  • PDF

Improvement of Early Strength of Blast-Furnace Slag Blended Cement at Low Temperature (고로 슬래그 시멘트의 저온 조기 강도 증진)

  • 장복기;임용무;김윤주
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.2
    • /
    • pp.130-135
    • /
    • 1999
  • The enhanced slag fineness and the batch water of low water-to-cement ratio(W/C) were employed in order to improve the early strength of blast-furnace slag blended cement at low temperature. A grinding aid was used to grind the blast-furnace slag into the fineness of 6,280$\textrm{cm}^2$/g (Blaine), and this fine slag was then homogeneously mixed with the ordinary Portland cement to produce the blast-furnace slag blended cement containing 40% slag by weight composition. On the other hand, the batch water could be reduced from W/C=0.50 (KS L 5105) to W/C=0.33 through a commercial, naphthalene type superplasticizer. Through the method mentioned above, the early strength of the blast-furnace slag blended cement at low temperature could be enhanced even somewhat higher than the Portland cement strength. And the microsturcture of the cement was studied by both the pore structure analysis and the A.C. impedance measurement.

  • PDF

An Experimental Study on the Strength Development of Fly-Ash Mortar by Using the Activator and Curing Temperature change. (자극제 사용 및 양생온도 변화에 의한 플라이애쉬 모르타르의 강도발현에 관한 실험적 연구)

  • 배수환;최광윤;정재동;최영화
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.277-280
    • /
    • 2003
  • The purpose of this study is for the active use of the fly ash, which is a by-product of the combustion pulverizes coal thermal power plants, to compensate for the lack of landfill and for conservation of energy, by using fly ash as the supplementary cementitious material, and to prove its possibility as the related products of the cement. First of all, we examined strength development of Micro grinding fly ash by elevating its fineness and using $Na_{2}SO_{4}$ as an activator to elevate pozzolanic reaction of fly ash. Following fly ash replacement ratio and curing temperature we hope to prove its properties to suggest its possibility in the concrete and cement industry. In case of water curing, the more fineness and higher annexing of activator is, the higher strength is, and the higher curing temperature is the more pozzolanic reaction happens.

  • PDF

Analysis of a possible rapid assessment of blast-furnace slag fine particles with a liquid densimeter (액체밀도계에 의한 고로슬래그 미분말의 분말도 신속평가 가능성 분석)

  • Lee, Jae-Jin;Kim, Min-Sang;Baek, Cheol;Joo, Eun-Hui;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.10a
    • /
    • pp.54-55
    • /
    • 2016
  • Recently in the construction industry, industrial by-product admixtures like blast-furnace slag fine particles (BS henceforth) are being used as binding material, reducing the use of cement, and measures to reduce CO2 emissions are being examined on various levels. However, the BS being used domestically varies depending on the origin of resources, and by circulating BS that is inappropriate to the KS standard, problems are occurring in terms of changes and declines in the quality of concrete which uses it. Therefore in this study the liquid densimeter principle was used to assess various BS fineness qualities; with 100 g/L fixed, a 1,000cc mass cylinder was most appropriate for assessing the quality of cement fineness.

  • PDF

An Experimental Study on the Engineering Properties of Concrete According to the Fineness and Replacement Ratio of Blast-Furnace Slag (고로슬래그미분말의 분말도 및 대체율에 따른 콘크리트의 공학적 특성에 관한 실험적 연구)

  • Na Chul-Sung;Lee Dong-Heck;Kim Jae-Hwan;Kim Won-Kee;Baik Yong-Kwan;Kim Moo-Han
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.565-568
    • /
    • 2004
  • Properties examination of concrete using blast-furnace slag instead of cement is necessary, so it is planed that: basic data for utilization and performance management of blast-furnace slag by means of cement replacement is presented with experimental comparison and investigation of engineering properties of concrete according to the replacement ratio and fineness of blast-furnace slag.

  • PDF