• Title/Summary/Keyword: film forming

Search Result 475, Processing Time 0.03 seconds

Studies on the Film-Forming Yeast Isolated from Apple Wine -(I) Isolation and Identification of Yeast Strain (사과주(酒)에서 분리(分離)한 산막효모(産膜酵母)에 관(關)한 연구(硏究) -(1) 균주(菌株)의 분리(分離) 및 동정(同定))

  • Chung, Ki Taek;Song, Hyung Ik
    • Current Research on Agriculture and Life Sciences
    • /
    • v.1
    • /
    • pp.159-163
    • /
    • 1983
  • Film-formation, which often occurs during storage of apple wine, owing to contamination by film-forming yeasts, results in inferior products. Therefore, for the purpose of preventing this occurrence, we isolated and identified yeast strain. Among the total number of 45 yeast strains which were isolated from contaminated apple wine in winery, the strains FY-4 and FY-5 were found to be useful. The strain FY-5, which greatly formed film on apple wine, was identified as Hansenula beijerinckii or similar strain according to taxonomic characteristics.

  • PDF

Functional and Film-forming Properties of Fractionated Barley Proteins

  • Cho, Seung-Yong;Rhee, Chul
    • Food Science and Biotechnology
    • /
    • v.18 no.4
    • /
    • pp.889-894
    • /
    • 2009
  • Barley proteins are expected to have unique functional properties due to their high content of alcohol soluble protein, hordein. Since the barley proteins obtained by conventional isoelectric precipitation method cannot represent hordein fraction, barley proteins were fractionated to albumin, globulin, glutelin, and hordein with respect to extraction solvents. Functional properties and film-forming properties of solubility-fractionated barley proteins were investigated to explore their potential for human food ingredient and industrial usage. The 100 g of total barley protein comprised 5 g albumin, 23 g globulin, 45 g glutelin, and 27 g hordein. Water-binding capacities of barley protein isolates ranged from 140-183 mL water/100 g solid. Hordein showed the highest oil absorption capacity (136 mL oil/100 g), and glutelin showed the highest gelation property among the fractionated proteins. In general, the barley protein fractions formed brittle and weak films as indicated by low tensile strength (TS) and percent elongation at break (E) values. The salt-soluble globulin fraction produced film with the lowest TS value. Although films made from glutelin and hordein were dark-colored and had lower E values, they could be used as excellent barriers against water transmission.

Forming Gas Post Metallization Annealing of Recessed AlGaN/GaN-on-Si MOSHFET

  • Lee, Jung-Yeon;Park, Bong-Ryeol;Lee, Jae-Gil;Lim, Jongtae;Cha, Ho-Young
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.15 no.1
    • /
    • pp.16-21
    • /
    • 2015
  • In this study, the effects of forming gas post metallization annealing (PMA) on recessed AlGaN/GaN-on-Si MOSHFET were investigated. The device employed an ICPCVD $SiO_2$ film as a gate oxide layer on which a Ni/Au gate was evaporated. The PMA process was carried out at $350^{\circ}C$ in forming gas ambient. It was found that the device instability was improved with significant reduction in interface trap density by forming gas PMA.

Isolation and Identification of Bacillus Strains with Antagonistic Properties against Film-forming Yeasts Overgrown in Low Salted Soybean Pastes (저염 장류에서 증식하는 산막 효모에 길항 작용을 갖는 Bacillus 균주의 분리)

  • Jeon, SaeBom;Ryu, MyeongSeon;Kim, Yong Sang;Jo, Seung Wha;Jeong, Do Yeon;Uhm, Tai-Boong
    • Korean Journal of Microbiology
    • /
    • v.49 no.3
    • /
    • pp.286-291
    • /
    • 2013
  • Soybean pastes with 8% (w/w) salinity were prepared instead of soybean paste with 14% (w/w) salinity to meet the growing demands of Korean's low sodium diet. After aging, white films had appeared on the surface of all low-salted soybean pastes [8% (w/w) salinity] unlike high-salted soybean pastes [14% (w/w) salinity]. All of eight microbes isolated from the surface film were identified as Pichia kudriavzevii. Eleven Bacillus strains with good characteristics of fermentation were isolated from traditionally fermented soybean pastes in order to preserve their unique flavors and aromas after aging, and as a result of analyzing the biochemical characteristics and 16S rRNA sequences, those were identified as B. subtilis, B. licheniformis, and B. methylotrophicus. All of the Bacillus isolates had antagonistic activities against 8 isolates of the film-forming yeasts and harbored the genes for synthesis of antimicrobial surfactants including lichenysin and/or surfactin.

An Experimental Study on the Frost Prevention using Micro Liquid Film of an Antifreeze Solution

  • Chang Young-Soo;Yun Won-Nam
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.14 no.2
    • /
    • pp.66-75
    • /
    • 2006
  • The effect of antifreeze solution liquid film on the frost prevention is experimentally investigated. It is desirable that the antifreeze solution spreads widely on the heat exchanger surface forming thin liquid film to prevent frost nucleation while having small thermal resistance across the film. A porous layer coating technique is adopted to improve the wettability of the antifreeze solution on a parallel plate heat exchanger. The antifreeze solution spreads widely on the heat exchanger surface with $100{\mu}m$ thickness by the capillary force resulted from the porous structure. It is observed that the antifreeze solution liquid film prevents a parallel plate heat exchanger from frosting. The reductions of heat and mass transfer rate caused by the thin liquid film are only $1{\sim}2%$ compared with those for non-liquid film surface.

A study on releasing high aspect ratio micro features formed with a UV curable resin (UV경화수지의 고형상비 미세패턴 이형에 관한 연구)

  • Kwon, Ki-Hwan;Yoo, Yeong-Eun;Kim, Chang-Wan;Park, Young-Woo;Je, Tae-Jin;Choi, Doo-Sun
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1833-1836
    • /
    • 2008
  • Recently as the micro surface features become higher and diverse in their shapes, the releasing of the molded features becomes more crucial for manufacturing of the micro patterned products. The higher aspect ratio of the features or more complex shape of the features results in larger releasing force, elongation or cohesive failure of the features during the releasing. Another issue would be the uniformity of the released surface features after molding, especially for applications with large area surface. The micro patterned optical film, one of typical applications for micro surface features, consists of two layers, the thermoplastic base film and the micro formed UV resin layer. Therefore two interfaces are typically involved during the forming of this micro featured film; one is between the base film and the UV resin and another is between the resin and the pattern master. To improve the releasing of the molded surface features, the adhesive characteristic was investigated at these two interfaces. A PET film was used as a base film and two UV curable resins with different surface energy were prepared for different adhesiveness. Also the two different pattern masters were employed; one is made from brass-copper alloy and fabricated with PMMA. The adhesiveness at each interface was measured for some combinations of these base film, UV resins and the masters and the effect of this adhesiveness on the releasing was investigated.

  • PDF

Research on the Rheological Properties of Aqueous Film Forming Foam to Respond to Ship Oil Fires (함정 유류화재 대응을 위한 수성막포의 유변학적 특성 연구)

  • Kil-Song Jeon;Hwi-Seong Kim;Jung-Hoon You;Yong-Ho Yoo;Jin-Ouk Park
    • Applied Chemistry for Engineering
    • /
    • v.34 no.6
    • /
    • pp.603-607
    • /
    • 2023
  • Aqueous film forming foam (AFFF) is a critical fire suppression agent used in combating hydrocarbon fires. This type of fire suppressant is highly effective due to its ability to form a protective film, dissipate heat, inhibit combustion, and utilize a blend of chemical substances to extinguish fires. While these properties offer significant advantages in responding to hydrocarbon fires, AFFF is distinct in its deployment as it is dispensed in the form of foam. Therefore, the rheological analysis of AFFF foam using a rheometer plays a crucial role in predicting the spray characteristics of AFFF for combating hydrocarbon fires, and this is closely associated with effective fire suppression. In this study, we conducted rheometer experiments to confirm the non-Newtonian behavior (shear-thinning) of AFFF foam and obtained data on the form's stability. These experimental data are expected to contribute to enhancing the efficiency of fire suppression systems utilizing AFFF.

Characterization of the Boundary Films Formed in Lubricated Sliding at High Temperatures (고올 윤활상태에서 형성된 경계막의 특성에 관한 연구)

  • 좌성훈
    • Tribology and Lubricants
    • /
    • v.11 no.2
    • /
    • pp.34-43
    • /
    • 1995
  • The boundary films formed in sliding on steel surfaces were characterized using various lubricants. The mechanism of boundary film formation and loss was investigated over a range of temperature. The thickness of the boundary films was monitored in-situ by an ellipsometer, and the composition of the films was analyzed by XPS. The performance of the lubricants is closely associated with boundary film forming ability. In order to achieve high load carrying capacity, a boundary film must be formed on the surface. Sliding is necessary to form the films and some time is also required. As temperature increases, chemical reactivity increases the film formation rate, while the film removal rate increases due to thg decrease of durability of the boundary film material. There is a balance between these two competing mechanisms and this balance is reflected in the boundary film thickness.

Studies on Manufacture of Thin Composite Panel for Substitute Use of Plywood (I) - On the Optimum Manufacturing Condition of Composites - (합판대용(合板代用) 박판상(薄板狀) 복합재(複合材) 제조(製造)에 관(關)한 연구(硏究) (I) - 복합재(複合材) 제조(製造)의 최적조건(最適條件)에 관(關)하여 -)

  • Lee, Phil-Woo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.23 no.2
    • /
    • pp.55-69
    • /
    • 1995
  • The primary objective of this research was to investigate optimum manufacturing condition of thin composite panels composed of sawdust, polyethylene film and polypropylene net. At the study the experiment was designed to make thin board in which sawdust offers effectiveness as core composing material, polyethylene as adhesive with added urea resin, and polypropylene as stiffness and flexibility in the composition panel. 100 types of thin composite panels were manufactured according to press-lam and mat-forming process of various hot pressing conditions(pressure, temperature and time). They were tested and compared with control boards on bending properties(MOR, MOE, SPL, WML), internal bond strength, thickness swelling, linear expansion and water absorption. At the same time the visual inspections of each types of panels were accomplished. The physical and mechanical properties of composite types passed by visual inspection were analyzed by Tukey's studentized range test. From the statistical analysis, the optimum manufacturing condition of thin composite panels were selected. Compared with two manufacturing processes, mat-forming process performed better than press-lam process in all tested properties. The optimum manufacturing conditions resulted from the experiment and statistical analysis were able to determine as following: the press temperature was shown the most good result at 130$^{\circ}C$ in mat forming process and 140$^{\circ}C$ press lam process, the press time 4 min in both processes, but the press pressure was 25-10kg/$cm^2$ in mat forming and 15k/$cm^2$ press lam process.

  • PDF

Experimental Study on Mode-I Energy Release Rate of Polypropylene Adhesive Layer Manufactured by Microwave Composite Forming Process (마이크로파 복합재 성형 공정을 이용한 폴리프로필렌 접착층의 모드 I 에너지 해방률에 대한 실험적 연구)

  • Park, E.T.;Kim, T.J.;Kim, J.;Kang, B.S.;Song, W.J.
    • Transactions of Materials Processing
    • /
    • v.31 no.1
    • /
    • pp.29-38
    • /
    • 2022
  • Recently, the composite material market is gradually growing. Various composite forming processes have been developed in order to reduce the production cost of the composite material. Unlike the conventional forming process, the microwave composite forming process has the advantage of reducing the processing time because the composite material is heated directly or indirectly at the same time. Due to this advantage, in this study, a double cantilever beam test was conducted with specimens manufactured by the microwave composite forming process. The purpose of this study was to compare mode-I energy release rate for specimens manufactured by prepreg compression forming and microwave composite forming processes. First, a microwave oven was proposed to conduct the microwave composite forming process. Double cantilever beam specimens were manufactured. After that, the double cantilever beam test was conducted to obtain the mode-I energy release rate. Mode-I energy release rates of specimens manufactured by the microwave composite forming and prepreg compression forming processes were then compared. As a result, mode-I energy release rates of specimens fabricated by the microwave composite forming process were similar to those fabricated with the prepreg compression forming process with a relatively reduced process time.