• Title/Summary/Keyword: fiber analysis

Search Result 3,987, Processing Time 0.034 seconds

HEAT TRANSFER ANALYSIS ON THE PREFORM HEATING AND THE GLASS FIBER DRAWING IN A GRAPHITE FURNACE FOR OPTICAL FIBER MANUFACTURING PROCESS (광섬유 생산공정용 퍼니스 내의 모재 가열 및 유리섬유 인출에 대한 열전달 해석)

  • Kim, K.;Kim, D.;Kwak, H.S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.88-91
    • /
    • 2011
  • Glass fiber drawing from a silica preform is one of the most important processes in optical fiber manufacturing. High purify silica preform of cylindrical shape is fed into the graphite furnace, and then a very thin glass fiber of 125 micron diameter is drawn from the softened and heated preform. A computational analysis is performed to investigate the heat transfer characteristics of preform heating and the glass fiber drawing in the furnace. In addition to the dominant radiative heating of preform by the heating element in the furnace, present analysis also includes the convective heat transport by the gas flowing around the preform that experiences neck-dawn profile and the freshly drawn glass fiber at high fiber drawing speed. The computational results present the effects of gas flow on the temperature of preform and glass fiber as well as the neck-down profile of preform.

  • PDF

A New Method for Measuring Fiber Length and Fiber Coarseness Using Image Analysis Technique (화상분석법을 응용한 섬유장 및 섬유 조도 측정법 개발)

  • 배진한;김철환;박종열
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.34 no.2
    • /
    • pp.13-21
    • /
    • 2002
  • A new method for measuring fiber length and fiber coarseness was developed using image analysis technique. Measured fibers were transferred to a glass slide on a filter paper placed on a wire of the laboratory paper machine. After staining the fibers on the slide, mean fiber lengths and coarseness were measured by a commercial image analysis software, named KS400. The resultant data obtained from the image analysis displayed a close correlation with those from FS-200 and also showed excellent reproducibility as well as those from FS-200. The length of synthetic fibers over 10 mm long could be readily measured by this new analysis technique. Finally, a substantial improvement in precision for measuring fiber length and coarseness was made with less operator's effort for a given time.

The Study on Characteristics of Collected Filter as Analysis of Carbon in Airborne Particulate Matters by Elemental Analyzer (원소분석기를 사용한 부유입자상물질중의 탄소성분 분석시 포집여지의 특성에 관한 연구)

  • 황경철;조기철;최종욱
    • Journal of environmental and Sanitary engineering
    • /
    • v.10 no.2
    • /
    • pp.67-73
    • /
    • 1995
  • In order to study of characteristics of collected filter as analysis of carbon in airborne particulate matters by Elemental Analyzer, quartz fiber filter and glass fiber filter were used. The results are followed as; There was no difference of confidence in collection rate of airborne particulate matters between quartz fiber filter and glass fiber filter. Airborne particulate matters were collected on both filters evenly and the use of quartz fiber filter is better than glass fiber filter as analysis of carbon by thermal method.

  • PDF

Flexural performance and fiber distribution of an extruded DFRCC panel

  • Lee, Bang Yeon;Han, Byung-Chan;Cho, Chang-Geun;Kim, Yun Yong
    • Computers and Concrete
    • /
    • v.10 no.2
    • /
    • pp.105-119
    • /
    • 2012
  • This paper presents the mix composition and production method that was applied to an extruded Ductile Fiber Reinforced Cement Composite (DFRCC) panel, as well as the flexural performance, represented by deformation hardening behavior with multiple cracking. The effect of fiber distribution characteristics on the flexural behavior of the panel is also addressed. In order to demonstrate the fiber distribution effect, a series of experiments and analyses, including a sectional image analysis and micromechanical analysis, was performed. From the experimental and analysis results, it was found that the flexural behavior of the panel was highly affected by a slight variation in the mix composition. In terms of the average fiber orientation, the fiber distribution was found to be similar to that derived under the assumption of a two-dimensional random distribution, irrespective of the mix composition. In contrast, the probability density function for the fiber orientation was measured to vary depending on the mix composition.

Nonlinear analysis and tests of steel-fiber concrete beams in torsion

  • Karayannis, Chris G.
    • Structural Engineering and Mechanics
    • /
    • v.9 no.4
    • /
    • pp.323-338
    • /
    • 2000
  • An analytical approach for the prediction of the behaviour of steel-fiber reinforced concrete beams subjected to torsion is described. The analysis method employs a special stress-strain model with a non-linear post cracking branch for the material behaviour in tension. Predictions of this model for the behaviour of steel-fiber concrete in direct tension are also presented and compared with results from tests conducted for this reason. Further in this work, the validation of the proposed torsional analysis by providing comparisons between experimental curves and analytical predictions, is attempted. For this purpose a series of 10 steel-fiber concrete beams with various cross-sections and steel-fiber volume fractions tested in pure torsion, are reported here. Furthermore, experimental information compiled from works around the world are also used in an attempt to establish the validity of the described approach based on test results of a broad range of studies. From these comparisons it is demonstrated that the proposed analysis describes well the behaviour of steel-fiber concrete in pure torsion even in the case of elements with non-rectangular cross-sections.

Stress and Strain Distribution of Thick Composites with Various Types of Fiber Waviness under Tensile and Compressive Loadings (다양한 형태의 보강섬유 굴곡을 가지는 두꺼운 복합재료의 인장/압축 하중 하에서의 응력/변형률 분포)

  • 신재윤;이승우;전흥재
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.04a
    • /
    • pp.97-100
    • /
    • 2000
  • A FEA(finite element analysis) model was proposed to study stress and strain distributions in thick composites with various types of fiber waviness under tensile and compressive loadings. Three types of model were considered in this study: uniform fiber waviness, graded fiber waviness and localized fiber waviness models. In the analysis, both material and geometrical nonlinearities due to fiber waviness were incorporated into the model utilizing energy density and incremental method. The strain distributions of uniform fiber waviness model were strongly influenced whereas the stress distributions were little influenced by fiber waviness. The stress and strain distributions of graded and localized fiber waviness models showed more complex distributions than those of uniform fiber waviness model due to the variation of fiber waviness along the thickness and length directions. It was concluded that the stress and strain distributions of composites with fiber waviness were significantly affected by types of fiber waviness.

  • PDF

Evaluation of elastic-plastic behavior in MMC interface according to the reinforced fiber placement structure (강화섬유 배치구조에 따른 MMC계면에서의 탄소성거동 평가)

  • Kang, Ji-Woong;Kim, Sang-Tae;Kwon, Oh-Heon
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.410-414
    • /
    • 2004
  • Under longitudinal loading continuous fiber reinforced metal matrix composite(MMC) have interpreted an outstanding performance. However, the applicability of continuous fiber reinforced MMCs is somewhat limited due to their relatively poor transverse properties. Therefore, the transverse properties of MMCs are significantly influenced by the properties of the fiber/matrix interface. In this study, elastic-plastic behavior of transversely loaded unidirectional fiber reinforced metal matrix composites investigated by using elastic-plastic finite element analysis. Different fiber placement(square and hexagon) and fiber volume fractions were studied numerically. The interface was treated as three thin layer (with different properties) with a finite thickness between the fiber and the matrix. The analyses were based on a two-dimensional generalized plane strain model of a cross-section of an unidirectional composite by the ANSYS finite element analysis code.

  • PDF

A Study on the Structural Analysis of Fiber Guide accept to 4C MM Optical Fiber (4C의 MM Optical Fiber를 수용 가능한 Fiber Guide의 구조해석)

  • Jung, Yoon-soo;Gao, Jia-Chen;Kim, Jae-Yeol;You, Gwan-Jong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.6
    • /
    • pp.75-80
    • /
    • 2017
  • The use of optical fiber makes it possible to transfer a large amount of data, thereby enabling a high-speed image transmission with a high response speed and a large number of frames. The need for an optical fiber HDMI System has grown in importance due to the rapid development of displays with large sizes and high-resolution images. In this paper, we have studied the structural design and FEM analysis of a 4C fiber guide for hybrid interconnection implementation. According to the structural analysis of the fiber guide, we have confirmed the safety of the design and we will make additional design changes to minimize the optical loss and fabricate a fiber guide for photoelectric composite HDMI in the future.

Determination of Electrospun Fiber Diameter Distributions Using Image Analysis Processing

  • Shin, Eun-Ho;Cho, Kwang-Soo;Seo, Moon-Hwo;Kim, Hyung-Sup
    • Macromolecular Research
    • /
    • v.16 no.4
    • /
    • pp.314-319
    • /
    • 2008
  • An image analysis processing method for the measurement of nanofiber diameter was developed. For the analysis, scanning electron microscopy (SEM) images of electrospun fiber were prepared and applied to the individual measurement of the fiber diameter by using the developed and the traditional manual methods. Both methods provided a similar fiber distribution. The fiber average diameters were similar but the variance of the new method was larger than that of the manual method. The average diameters from the two methods exhibited a linear relationship with a high coefficient. The developed method can be used as a practical tool to estimate the fiber diameter of the electro spun web.

The comparative Study of experiment and analysis about two-spans beam with Steel Fiber (강섬유 혼입 2경간 연속보에 관한 실험과 해석의 비교)

  • 곽계환;고성재;이재영
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.10a
    • /
    • pp.388-395
    • /
    • 2002
  • Recently, adapt cases of concrete structure are increasing according to structural largeness and variety. We energetically continue to study empirical research about Steel Fiber but analytic research of Two-spans Beam With Steel Fiber to model real structure is just beginning stage. This study will suggest analytic algorithm of Two-spans Beam With Steel Fiber by comparing and analyzing deflection and strain of Two-spans Beam With Steel Fiber after we develop Nonlinear Analysis Program considering edge stress analysis.

  • PDF